{"title":"The moduli space of left-invariant metrics on six-dimensional characteristically solvable nilmanifolds","authors":"Isolda Cardoso, Ana Cosgaya, Silvio Reggiani","doi":"10.1002/mana.202400213","DOIUrl":"https://doi.org/10.1002/mana.202400213","url":null,"abstract":"<p>A real Lie algebra is said to be characteristically solvable if its derivation algebra is solvable. We explicitly determine the moduli space of left-invariant metrics, up to isometric automorphism, for 6-dimensional nilmanifolds whose associated Lie algebra is characteristically solvable of triangular type. We also compute the corresponding full isometry groups. For each left-invariant metric on these nilmanifolds we compute the index and distribution of symmetry. In particular, we find the first known examples of Lie groups which do not admit a left-invariant metric with positive index of symmetry. As an application we study the index of symmetry of nilsoliton metrics. We prove that nilsoliton metrics detect the existence of left-invariant metrics with positive index of symmetry.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 5","pages":"1496-1520"},"PeriodicalIF":0.8,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143930502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterizations of the Sobolev space H1 on the boundary of a strongly Lipschitz domain in 3-D","authors":"Nathanael Skrepek","doi":"10.1002/mana.202400282","DOIUrl":"https://doi.org/10.1002/mana.202400282","url":null,"abstract":"<p>In this work, we investigate the Sobolev space <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>∂</mi>\u0000 <mi>Ω</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathrm{H}^{1}(partial Omega)$</annotation>\u0000 </semantics></math> on a strongly Lipschitz boundary <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>∂</mi>\u0000 <mi>Ω</mi>\u0000 </mrow>\u0000 <annotation>$partial Omega$</annotation>\u0000 </semantics></math>, that is, <span></span><math>\u0000 <semantics>\u0000 <mi>Ω</mi>\u0000 <annotation>$Omega$</annotation>\u0000 </semantics></math> is a strongly Lipschitz domain (not necessarily bounded). In most of the literature, this space is defined via charts and Sobolev spaces on flat domains. We show that there is a different approach via differential operators on <span></span><math>\u0000 <semantics>\u0000 <mi>Ω</mi>\u0000 <annotation>$Omega$</annotation>\u0000 </semantics></math> and a weak formulation directly on the boundary that leads to the same space. This second characterization of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>∂</mi>\u0000 <mi>Ω</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathrm{H}^{1}(partial Omega)$</annotation>\u0000 </semantics></math> is in particular of advantage, when it comes to traces of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 <mo>(</mo>\u0000 <mo>curl</mo>\u0000 <mo>,</mo>\u0000 <mi>Ω</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathrm{H}(operatorname{curl},Omega)$</annotation>\u0000 </semantics></math> vector fields.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 4","pages":"1342-1355"},"PeriodicalIF":0.8,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400282","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143809571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonstandard representation of the Dirichlet form and application to the comparison theorem","authors":"Haosui Duanmu, Aaron Smith","doi":"10.1002/mana.202300246","DOIUrl":"https://doi.org/10.1002/mana.202300246","url":null,"abstract":"<p>The Dirichlet form is a generalization of the Laplacian, heavily used in the study of many diffusion-like processes. In this paper, we present a <i>nonstandard representation theorem</i> for the Dirichlet form, showing that the usual Dirichlet form can be well-approximated by a <i>hyperfinite</i> sum. One of the main motivations for such a result is to provide a tool for directly translating results about Dirichlet forms on finite or countable state spaces to results on more general state spaces, without having to translate the details of the proofs. As an application, we compare the Dirichlet forms of two general Markov processes by applying the transfer of the well-known comparison theorem for finite Markov processes.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 4","pages":"1167-1183"},"PeriodicalIF":0.8,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300246","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143809762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David P. Blecher, Matthew Neal, Antonio M. Peralta, Shanshan Su
{"title":"M\u0000 $M$\u0000 -Ideals in real operator algebras","authors":"David P. Blecher, Matthew Neal, Antonio M. Peralta, Shanshan Su","doi":"10.1002/mana.202400227","DOIUrl":"https://doi.org/10.1002/mana.202400227","url":null,"abstract":"<p>In a recent paper, we showed that a subspace of a real <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>JBW</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <annotation>${rm JBW}^*$</annotation>\u0000 </semantics></math>-triple is an <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math>-summand if and only if it is a <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>weak</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <annotation>${rm weak}^*$</annotation>\u0000 </semantics></math>-closed triple ideal. As a consequence, <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math>-ideals of real <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>JB</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <annotation>${rm JB}^*$</annotation>\u0000 </semantics></math>-triples, including real <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <annotation>${rm C}^*$</annotation>\u0000 </semantics></math>-algebras, real <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>JB</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <annotation>${rm JB}^*$</annotation>\u0000 </semantics></math>-algebras and real TROs, correspond to norm-closed triple ideals. In this paper, we extend this result by identifying the <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math>-ideals in (possibly non-self-adjoint) real operator algebras and Jordan operator algebras. The argument for this is necessarily different. We also give simple characterizations of one-sided <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math>-ideals in real operator algebras, and give some applications to that theory.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 4","pages":"1328-1341"},"PeriodicalIF":0.8,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143809763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}