{"title":"The energy decay rate of a transmission system governed by the degenerate wave equation with drift and under heat conduction with the memory effect","authors":"Mohammad Akil, Genni Fragnelli, Ibtissam Issa","doi":"10.1002/mana.202300571","DOIUrl":"10.1002/mana.202300571","url":null,"abstract":"<p>In this paper, we investigate the stabilization of the transmission problem of the degenerate wave equation and the heat equation under the Coleman–Gurtin heat conduction law or Gurtin–Pipkin law with the memory effect. We investigate the polynomial stability of this system when employing the Coleman–Gurtin heat conduction, establishing a decay rate of type <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>t</mi>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mn>4</mn>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$t^{-4}$</annotation>\u0000 </semantics></math>. Next, we demonstrate exponential stability in the case when Gurtin–Pipkin heat conduction is applied.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Local and global solutions on arcs for the Ericksen–Leslie problem in \u0000 \u0000 \u0000 R\u0000 N\u0000 \u0000 $mathbb {R}^N$","authors":"Daniele Barbera, Vladimir Georgiev","doi":"10.1002/mana.202300253","DOIUrl":"10.1002/mana.202300253","url":null,"abstract":"<p>The work deals with the Ericksen–Leslie system for nematic liquid crystals on the space <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>N</mi>\u0000 </msup>\u0000 <annotation>$mathbb {R}^N$</annotation>\u0000 </semantics></math> with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>N</mi>\u0000 <mo>≥</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$Nge 3$</annotation>\u0000 </semantics></math>. In our work, we suppose the initial condition <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>v</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <annotation>$v_0$</annotation>\u0000 </semantics></math> stays on an arc connecting two fixed orthogonal vectors on the unit sphere. Thanks to this geometric assumption, we prove through energy a priori estimates the local existence and the global existence for small initial data of a solution\u0000\u0000 </p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}