Heisenberg-smooth operators from the phase-space perspective

IF 0.8 3区 数学 Q2 MATHEMATICS
Robert Fulsche, Lauritz van Luijk
{"title":"Heisenberg-smooth operators from the phase-space perspective","authors":"Robert Fulsche,&nbsp;Lauritz van Luijk","doi":"10.1002/mana.70019","DOIUrl":null,"url":null,"abstract":"<p>Cordes' characterization of Heisenberg-smooth operators bridges a gap between the theory of pseudo-differential operators and quantum harmonic analysis (QHA). We give a new proof of the result by using the phase-space formalism of QHA. Our argument is flexible enough to generalize Cordes' result in several directions: (1) we can admit general quantization schemes, (2) allow for other phase-space geometries, (3) obtain Schatten-class analogs of the result, and (4) are able to characterize precisely ‘Heisenberg-analytic’ operators. For (3), we use QHA to derive Schatten versions of the Calderón–Vaillancourt theorem, which might be of independent interest.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2845-2866"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.70019","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70019","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Cordes' characterization of Heisenberg-smooth operators bridges a gap between the theory of pseudo-differential operators and quantum harmonic analysis (QHA). We give a new proof of the result by using the phase-space formalism of QHA. Our argument is flexible enough to generalize Cordes' result in several directions: (1) we can admit general quantization schemes, (2) allow for other phase-space geometries, (3) obtain Schatten-class analogs of the result, and (4) are able to characterize precisely ‘Heisenberg-analytic’ operators. For (3), we use QHA to derive Schatten versions of the Calderón–Vaillancourt theorem, which might be of independent interest.

Abstract Image

相空间视角下的海森堡光滑算子
Cordes对海森堡光滑算子的描述填补了伪微分算子理论和量子谐波分析(QHA)之间的空白。利用QHA的相空间形式给出了新的证明。我们的论证足够灵活,可以在几个方向上推广Cordes的结果:(1)我们可以接受一般的量化方案,(2)允许其他相空间几何,(3)获得结果的schattenclass类似物,(4)能够精确地表征“海森堡解析”算子。对于(3),我们使用QHA来推导Calderón-Vaillancourt定理的Schatten版本,这可能是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信