{"title":"Convergence results and optimal control problems via gap functions for n-player generalized multiobjective games with applications","authors":"Nguyen Van Hung, Andre A. Keller","doi":"10.1002/mana.12026","DOIUrl":"https://doi.org/10.1002/mana.12026","url":null,"abstract":"<p>The aim of this paper is to study some new results on the convergence of solutions for controlled systems driven by generalized multiobjective games, optimal control problems where the systems are governed by generalized multiobjective games and controlled systems of traffic networks. First, we recall the controlled systems of generalized multiobjective games proposed by Hung and Keller (Math. Nachr. <b>296</b> (2023), 3676–3698). Second, we introduce gap functions and a key Assumption 3.6 using nonlinear scalarization functions for these games. Results on the lower convergence and convergence of the solutions for such problems using the key Assumption 3.6 are established. Third, we revisit optimal control problems governed by generalized multiobjective games. We investigate necessary and sufficient conditions for the convergence of solutions to optimal control problems. Finally, as a real-world application, we consider the special case of controlled systems of traffic networks. The necessary and sufficient conditions for the convergence of solutions for these problems are also obtained. Many examples are given for the illustration of our results.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 6","pages":"1989-2013"},"PeriodicalIF":0.8,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144281418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The 2-divisibility of divisors on K3 surfaces in characteristic 2","authors":"Toshiyuki Katsura, Shigeyuki Kondō, Matthias Schütt","doi":"10.1002/mana.12024","DOIUrl":"https://doi.org/10.1002/mana.12024","url":null,"abstract":"<p>We show that K3 surfaces in characteristic 2 can admit sets of <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math> disjoint smooth rational curves whose sum is divisible by 2 in the Picard group, for each <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>=</mo>\u0000 <mn>8</mn>\u0000 <mo>,</mo>\u0000 <mn>12</mn>\u0000 <mo>,</mo>\u0000 <mn>16</mn>\u0000 <mo>,</mo>\u0000 <mn>20</mn>\u0000 </mrow>\u0000 <annotation>$n=8,12,16,20$</annotation>\u0000 </semantics></math>. More precisely, all values occur on supersingular K3 surfaces, with exceptions only at Artin invariants 1 and 10, while on K3 surfaces of finite height, only <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>=</mo>\u0000 <mn>8</mn>\u0000 </mrow>\u0000 <annotation>$n=8$</annotation>\u0000 </semantics></math> is possible.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 6","pages":"1964-1988"},"PeriodicalIF":0.8,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.12024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144281417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On birational automorphisms of double EPW-cubes","authors":"Simone Billi, Stevell Muller, Tomasz Wawak","doi":"10.1002/mana.12022","DOIUrl":"https://doi.org/10.1002/mana.12022","url":null,"abstract":"<p>We give a classification of finite groups of symplectic birational automorphisms on manifolds of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>K</mi>\u0000 <msup>\u0000 <mn>3</mn>\u0000 <mrow>\u0000 <mo>[</mo>\u0000 <mn>3</mn>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$textnormal {K3}^{[3]}$</annotation>\u0000 </semantics></math>-type with stable cohomological action. We describe the group of polarized automorphisms of a smooth double EPW-cube. Using this description, we exhibit examples of projective hyperkähler manifolds of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>K</mi>\u0000 <msup>\u0000 <mn>3</mn>\u0000 <mrow>\u0000 <mo>[</mo>\u0000 <mn>3</mn>\u0000 <mo>]</mo>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$textnormal {K3}^{[3]}$</annotation>\u0000 </semantics></math>–type of maximal Picard rank with a symplectic action of a large group.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 6","pages":"1943-1963"},"PeriodicalIF":0.8,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144281591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Calderón reproducing formulae on product spaces of homogeneous type and their applications","authors":"Ziyi He, Xianjie Yan, Dachun Yang","doi":"10.1002/mana.12014","DOIUrl":"https://doi.org/10.1002/mana.12014","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>X</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>d</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>μ</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(X_1,d_1,mu _1)$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>X</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>d</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>μ</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(X_2,d_2,mu _2)$</annotation>\u0000 </semantics></math> be two spaces of homogeneous type in the sense of R. R. Coifman and G. Weiss. In this article, the authors first introduce spaces of product test functions and product approximations of the identity with exponential decay on the product space <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>X</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <mo>×</mo>\u0000 <msub>\u0000 <mi>X</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$X_1times X_2$</annotation>\u0000 </semantics></math>. Using these, the authors establish product continuous/discrete Calderón reproducing formulae. As applications, the Littlewood–Paley characterizations, respectively, in terms of the Lusin area function, the Littlewood–Paley <span></span><math>\u0000 <semantics>\u0000 <mi>g</mi>\u0000 <annotation>$g$</annotation>\u0000 </semantics></math>-function, and the Littlewood–Paley <span></span><math>\u0000 <semantics>\u0000 <msubsup>\u0000 <mi>g</mi>\u0000 <mi>λ</mi>\u0000 <mo>∗</mo>\u0000 </msubsup>\u0000 <annotation>$g^*_{lambda }$</annotation>\u0000 </semantics></math>-function, of the Lebesgue space <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mi>p</mi>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>X</mi>\u0000 ","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 6","pages":"1839-1921"},"PeriodicalIF":0.8,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144281437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giovanni Calvaruso, Marco Castrillón-Lopez, Lorenzo Pellegrino
{"title":"On totally umbilical and minimal surfaces of the Lorentzian Heisenberg groups","authors":"Giovanni Calvaruso, Marco Castrillón-Lopez, Lorenzo Pellegrino","doi":"10.1002/mana.12020","DOIUrl":"https://doi.org/10.1002/mana.12020","url":null,"abstract":"<p>This paper has manifold purposes. We first introduce a description of the Gauss map for submanifolds (both spacelike and timelike) of a Lorentzian ambient space and relate the conformality of the Gauss map of a surface to total umbilicity and minimality. We then focus on surfaces of the three-dimensional Heisenberg group, equipped with any of its left-invariant Lorentzian metrics. We prove that with the obvious exception of the flat case, no totally umbilical surfaces occur. On the other hand, we determine and explicitly describe several examples of minimal and constant mean curvature (CMC) surfaces.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 6","pages":"1922-1942"},"PeriodicalIF":0.8,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.12020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144281473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Groups with triangle-free graphs on \u0000 \u0000 p\u0000 $p$\u0000 -regular classes","authors":"M. J. Felipe, M. K. Jean-Philippe, V. Sotomayor","doi":"10.1002/mana.202400554","DOIUrl":"https://doi.org/10.1002/mana.202400554","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math> be a prime. In this paper, we classify the <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-structure of those finite <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-separable groups such that, given any three non-central conjugacy classes of <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-regular elements, two of them necessarily have coprime lengths.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 6","pages":"1796-1807"},"PeriodicalIF":0.8,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400554","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144281372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}