Geraldo Botelho, Luis Alberto Garcia, Vinícius C. C. Miranda
{"title":"Disjoint \u0000 \u0000 p\u0000 $p$\u0000 -convergent operators and their adjoints","authors":"Geraldo Botelho, Luis Alberto Garcia, Vinícius C. C. Miranda","doi":"10.1002/mana.202300561","DOIUrl":"https://doi.org/10.1002/mana.202300561","url":null,"abstract":"<p>First, we give conditions on a Banach lattice <span></span><math>\u0000 <semantics>\u0000 <mi>E</mi>\u0000 <annotation>$E$</annotation>\u0000 </semantics></math> so that an operator <span></span><math>\u0000 <semantics>\u0000 <mi>T</mi>\u0000 <annotation>$T$</annotation>\u0000 </semantics></math> from <span></span><math>\u0000 <semantics>\u0000 <mi>E</mi>\u0000 <annotation>$E$</annotation>\u0000 </semantics></math> to any Banach space is disjoint <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-convergent if and only if <span></span><math>\u0000 <semantics>\u0000 <mi>T</mi>\u0000 <annotation>$T$</annotation>\u0000 </semantics></math> is almost Dunford–Pettis. Then, we study when adjoints of positive operators between Banach lattices are disjoint <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-convergent. For instance, we prove that the following conditions are equivalent for all Banach lattices <span></span><math>\u0000 <semantics>\u0000 <mi>E</mi>\u0000 <annotation>$E$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math>: (i) a positive operator <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 <mo>:</mo>\u0000 <mi>E</mi>\u0000 <mo>→</mo>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 <annotation>$T: E rightarrow F$</annotation>\u0000 </semantics></math> is almost weak <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-convergent if and only if <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>T</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <annotation>$T^*$</annotation>\u0000 </semantics></math> is disjoint <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-convergent; (ii) <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>E</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <annotation>$E^*$</annotation>\u0000 </semantics></math> has order continuous norm or <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>F</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <annotation>$F^*$</annotation>\u0000 </semantics></math> has the positive Schur property of order <span></span><math>\u0000","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4766-4777"},"PeriodicalIF":0.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}