Mathematische Nachrichten最新文献

筛选
英文 中文
Disjoint p $p$ -convergent operators and their adjoints
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-10-30 DOI: 10.1002/mana.202300561
Geraldo Botelho, Luis Alberto Garcia, Vinícius C. C. Miranda
{"title":"Disjoint \u0000 \u0000 p\u0000 $p$\u0000 -convergent operators and their adjoints","authors":"Geraldo Botelho, Luis Alberto Garcia, Vinícius C. C. Miranda","doi":"10.1002/mana.202300561","DOIUrl":"https://doi.org/10.1002/mana.202300561","url":null,"abstract":"<p>First, we give conditions on a Banach lattice <span></span><math>\u0000 <semantics>\u0000 <mi>E</mi>\u0000 <annotation>$E$</annotation>\u0000 </semantics></math> so that an operator <span></span><math>\u0000 <semantics>\u0000 <mi>T</mi>\u0000 <annotation>$T$</annotation>\u0000 </semantics></math> from <span></span><math>\u0000 <semantics>\u0000 <mi>E</mi>\u0000 <annotation>$E$</annotation>\u0000 </semantics></math> to any Banach space is disjoint <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-convergent if and only if <span></span><math>\u0000 <semantics>\u0000 <mi>T</mi>\u0000 <annotation>$T$</annotation>\u0000 </semantics></math> is almost Dunford–Pettis. Then, we study when adjoints of positive operators between Banach lattices are disjoint <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-convergent. For instance, we prove that the following conditions are equivalent for all Banach lattices <span></span><math>\u0000 <semantics>\u0000 <mi>E</mi>\u0000 <annotation>$E$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mi>F</mi>\u0000 <annotation>$F$</annotation>\u0000 </semantics></math>: (i) a positive operator <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 <mo>:</mo>\u0000 <mi>E</mi>\u0000 <mo>→</mo>\u0000 <mi>F</mi>\u0000 </mrow>\u0000 <annotation>$T: E rightarrow F$</annotation>\u0000 </semantics></math> is almost weak <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-convergent if and only if <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>T</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <annotation>$T^*$</annotation>\u0000 </semantics></math> is disjoint <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-convergent; (ii) <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>E</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <annotation>$E^*$</annotation>\u0000 </semantics></math> has order continuous norm or <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>F</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <annotation>$F^*$</annotation>\u0000 </semantics></math> has the positive Schur property of order <span></span><math>\u0000","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4766-4777"},"PeriodicalIF":0.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142862177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Existence and regularity of strict solutions for a class of fractional evolution equations
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-10-22 DOI: 10.1002/mana.202400074
Guang Meng Wu, Jia Wei He
{"title":"Existence and regularity of strict solutions for a class of fractional evolution equations","authors":"Guang Meng Wu,&nbsp;Jia Wei He","doi":"10.1002/mana.202400074","DOIUrl":"https://doi.org/10.1002/mana.202400074","url":null,"abstract":"<p>We study the existence and Hölder regularity of solutions for fractional evolution equations of order <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>α</mi>\u0000 <mo>∈</mo>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mn>2</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$alpha in (1,2)$</annotation>\u0000 </semantics></math>. By means of an analytic resolvent, we construct an interpolation space, which can effectively lower the regularity of initial data. By virtue of the interpolation space and some properties of the analytic resolvent, we derive the existence and Hölder regularity of strict solutions for an inhomogeneous problem, as well as the existence and Hölder regularity of a nonlinear problem.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4730-4749"},"PeriodicalIF":0.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-sided estimates of Lebesque constants for Hölder spaces 赫尔德空间的勒贝斯克常数的双侧估计值
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-10-22 DOI: 10.1002/mana.202200286
Evgenii I. Berezhnoi
{"title":"Two-sided estimates of Lebesque constants for Hölder spaces","authors":"Evgenii I. Berezhnoi","doi":"10.1002/mana.202200286","DOIUrl":"https://doi.org/10.1002/mana.202200286","url":null,"abstract":"<p>A two-sided estimate of Lebesgue constants is proposed for the Hölder space <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>H</mi>\u0000 <mi>k</mi>\u0000 <mi>ω</mi>\u0000 </msubsup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>X</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$H_k^omega (X)$</annotation>\u0000 </semantics></math>, constructed from the modulus of continuity of the <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math>th order calculated in the symmetric space <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$X$</annotation>\u0000 </semantics></math>. Choosing different function spaces <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$X$</annotation>\u0000 </semantics></math>, we obtain new criteria for the convergence of classical Fourier series.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4750-4765"},"PeriodicalIF":0.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strong Kähler with torsion solvable lie algebras with codimension 2 nilradical 强凯勒带扭转可解谎言数组的子维度 2 nilradical
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-10-15 DOI: 10.1002/mana.202400349
Beatrice Brienza, Anna Fino
{"title":"Strong Kähler with torsion solvable lie algebras with codimension 2 nilradical","authors":"Beatrice Brienza,&nbsp;Anna Fino","doi":"10.1002/mana.202400349","DOIUrl":"https://doi.org/10.1002/mana.202400349","url":null,"abstract":"<p>In this paper, we study strong Kähler with torsion (SKT) and generalized Kähler structures on solvable Lie algebras with (not necessarily abelian) codimension 2 nilradical. We treat separately the case of <span></span><math>\u0000 <semantics>\u0000 <mi>J</mi>\u0000 <annotation>$J$</annotation>\u0000 </semantics></math>-invariant nilradical and non-<span></span><math>\u0000 <semantics>\u0000 <mi>J</mi>\u0000 <annotation>$J$</annotation>\u0000 </semantics></math>-invariant nilradical. A classification of such SKT Lie algebras in dimension 6 is provided. In particular, we give a general construction to extend SKT nilpotent Lie algebras to SKT solvable Lie algebras of higher dimension, and we construct new examples of SKT and generalized Kähler compact solvmanifolds.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4705-4729"},"PeriodicalIF":0.8,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400349","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the differential geometry of smooth ruled surfaces in 4-space 论 4 空间中光滑规则曲面的微分几何学
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-10-11 DOI: 10.1002/mana.202400295
Jorge Luiz Deolindo-Silva
{"title":"On the differential geometry of smooth ruled surfaces in 4-space","authors":"Jorge Luiz Deolindo-Silva","doi":"10.1002/mana.202400295","DOIUrl":"https://doi.org/10.1002/mana.202400295","url":null,"abstract":"<p>A smooth ruled surface in 4-space has only parabolic points or inflection points of the real type. We show, by means of contact with transverse planes, that at a parabolic point, there exist two tangent directions determining two planes along which the parallel projection exhibits <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$mathcal {A}$</annotation>\u0000 </semantics></math>-singularities of type butterfly or worse. In particular, such parabolic points can be classified as butterfly hyperbolic, parabolic, or elliptic points depending on the value of the discriminant of a binary differential equation (BDE). Also, whenever such discriminant is positive, we ensure that the integral curves of these directions form a pair of foliations on the ruled surface. Moreover, the set of points that nullify the discriminant is a regular curve transverse to the regular curve formed by inflection points of the real type. Finally, using a particular projective transformation, we obtain a simple parametrization of the ruled surface such that the moduli of its 5-jet identify a butterfly hyperbolic/parabolic/elliptic point, as well as we get the stable configurations of the solutions of BDE in the discriminant curve.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4689-4704"},"PeriodicalIF":0.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global solvability and hypoellipticity for evolution operators on tori and spheres
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-10-09 DOI: 10.1002/mana.202300506
Alexandre Kirilov, André Pedroso Kowacs, Wagner Augusto Almeida de Moraes
{"title":"Global solvability and hypoellipticity for evolution operators on tori and spheres","authors":"Alexandre Kirilov,&nbsp;André Pedroso Kowacs,&nbsp;Wagner Augusto Almeida de Moraes","doi":"10.1002/mana.202300506","DOIUrl":"https://doi.org/10.1002/mana.202300506","url":null,"abstract":"<p>In this paper, we investigate global properties of a class of evolution differential operators defined on a product of tori and spheres. We present a comprehensive characterization of global solvability and hypoellipticity, providing necessary and sufficient conditions that involve Diophantine conditions and the connectedness of sublevel sets associated with the coefficients of the operator. Furthermore, we recover well-known results from existing literature and introduce novel contributions.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4605-4650"},"PeriodicalIF":0.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Curvature and Weitzenböck formula for spectral triples
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-10-09 DOI: 10.1002/mana.202400158
Bram Mesland, Adam Rennie
{"title":"Curvature and Weitzenböck formula for spectral triples","authors":"Bram Mesland,&nbsp;Adam Rennie","doi":"10.1002/mana.202400158","DOIUrl":"https://doi.org/10.1002/mana.202400158","url":null,"abstract":"<p>Using the Levi-Civita connection on the noncommutative differential 1-forms of a spectral triple <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>B</mi>\u0000 <mo>,</mo>\u0000 <mi>H</mi>\u0000 <mo>,</mo>\u0000 <mi>D</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(mathcal {B},mathcal {H},mathcal {D})$</annotation>\u0000 </semantics></math>, we define the full Riemann curvature tensor, the Ricci curvature tensor and scalar curvature. We give a definition of Dirac spectral triples and derive a general Weitzenböck formula for them. We apply these tools to <span></span><math>\u0000 <semantics>\u0000 <mi>θ</mi>\u0000 <annotation>$theta$</annotation>\u0000 </semantics></math>-deformations of compact Riemannian manifolds. We show that the Riemann and Ricci tensors transform naturally under <span></span><math>\u0000 <semantics>\u0000 <mi>θ</mi>\u0000 <annotation>$theta$</annotation>\u0000 </semantics></math>-deformation, whereas the connection Laplacian, Clifford representation of the curvature, and the scalar curvature are all invariant under deformation.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4582-4604"},"PeriodicalIF":0.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400158","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Noether–Lefschetz locus of surfaces in P 3 ${mathbb {P}}^3$ formed by determinantal surfaces
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-10-09 DOI: 10.1002/mana.202400132
Manuel Leal, César Lozano Huerta, Montserrat Vite
{"title":"The Noether–Lefschetz locus of surfaces in \u0000 \u0000 \u0000 P\u0000 3\u0000 \u0000 ${mathbb {P}}^3$\u0000 formed by determinantal surfaces","authors":"Manuel Leal,&nbsp;César Lozano Huerta,&nbsp;Montserrat Vite","doi":"10.1002/mana.202400132","DOIUrl":"https://doi.org/10.1002/mana.202400132","url":null,"abstract":"<p>We compute the dimension of certain components of the family of smooth determinantal degree <span></span><math>\u0000 <semantics>\u0000 <mi>d</mi>\u0000 <annotation>$d$</annotation>\u0000 </semantics></math> surfaces in <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>3</mn>\u0000 </msup>\u0000 <annotation>${mathbb {P}}^3$</annotation>\u0000 </semantics></math>, and show that each of them is the closure of a component of the Noether–Lefschetz locus <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>N</mi>\u0000 <mi>L</mi>\u0000 <mo>(</mo>\u0000 <mi>d</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$NL(d)$</annotation>\u0000 </semantics></math>. Our computations exhibit that smooth determinantal surfaces in <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>3</mn>\u0000 </msup>\u0000 <annotation>${mathbb {P}}^3$</annotation>\u0000 </semantics></math> of degree 4 form a divisor in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>|</mo>\u0000 </mrow>\u0000 <msub>\u0000 <mi>O</mi>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>3</mn>\u0000 </msup>\u0000 </msub>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>4</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>|</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$|mathcal {O}_{{mathbb {P}}^3}(4)|$</annotation>\u0000 </semantics></math> with five irreducible components. We will compute the degrees of each of these components: <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>320</mn>\u0000 <mo>,</mo>\u0000 <mn>2508</mn>\u0000 <mo>,</mo>\u0000 <mn>136512</mn>\u0000 <mo>,</mo>\u0000 <mn>38475</mn>\u0000 </mrow>\u0000 <annotation>$320,2508,136512,38475$</annotation>\u0000 </semantics></math>, and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>320112</mn>\u0000 </mrow>\u0000 <annotation>$hskip.001pt 320112$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4671-4688"},"PeriodicalIF":0.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Riemannian 4-manifolds and their twistor spaces: A moving frame approach
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-10-09 DOI: 10.1002/mana.202300577
Giovanni Catino, Davide Dameno, Paolo Mastrolia
{"title":"On Riemannian 4-manifolds and their twistor spaces: A moving frame approach","authors":"Giovanni Catino,&nbsp;Davide Dameno,&nbsp;Paolo Mastrolia","doi":"10.1002/mana.202300577","DOIUrl":"https://doi.org/10.1002/mana.202300577","url":null,"abstract":"<p>In this paper, we study the twistor space <span></span><math>\u0000 <semantics>\u0000 <mi>Z</mi>\u0000 <annotation>$Z$</annotation>\u0000 </semantics></math> of an oriented Riemannian 4-manifold <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math> using the moving frame approach, focusing, in particular, on the Einstein, non-self-dual setting. We prove that any general first-order linear condition on the almost complex structures of <span></span><math>\u0000 <semantics>\u0000 <mi>Z</mi>\u0000 <annotation>$Z$</annotation>\u0000 </semantics></math> forces the underlying manifold <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math> to be self-dual, also recovering most of the known related rigidity results. Thus, we are naturally lead to consider first-order quadratic conditions, showing that the Atiyah–Hitchin–Singer almost Hermitian twistor space of an Einstein 4-manifold bears a resemblance, in a suitable sense, to a nearly Kähler manifold.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4651-4670"},"PeriodicalIF":0.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300577","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visco-elastic damped wave models with time-dependent coefficient
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-10-08 DOI: 10.1002/mana.202300341
Halit Sevki Aslan, Michael Reissig
{"title":"Visco-elastic damped wave models with time-dependent coefficient","authors":"Halit Sevki Aslan,&nbsp;Michael Reissig","doi":"10.1002/mana.202300341","DOIUrl":"https://doi.org/10.1002/mana.202300341","url":null,"abstract":"<p>In this paper, we study the following Cauchy problem for linear visco-elastic damped wave models with a general time-dependent coefficient <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>g</mi>\u0000 <mo>=</mo>\u0000 <mi>g</mi>\u0000 <mo>(</mo>\u0000 <mi>t</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$g=g(t)$</annotation>\u0000 </semantics></math>:\u0000\u0000 </p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4535-4581"},"PeriodicalIF":0.8,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300341","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信