Mathematische Nachrichten最新文献

筛选
英文 中文
Duality and the equations of Rees rings and tangent algebras 对偶性及里斯环和正切代数的方程
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-09-29 DOI: 10.1002/mana.70044
Matthew Weaver
{"title":"Duality and the equations of Rees rings and tangent algebras","authors":"Matthew Weaver","doi":"10.1002/mana.70044","DOIUrl":"https://doi.org/10.1002/mana.70044","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mi>E</mi>\u0000 <annotation>$E$</annotation>\u0000 </semantics></math> be a module of projective dimension 1 over a Noetherian ring <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$R$</annotation>\u0000 </semantics></math> and consider its Rees algebra <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>R</mi>\u0000 <mo>(</mo>\u0000 <mi>E</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathcal {R}(E)$</annotation>\u0000 </semantics></math>. We study this ring as a quotient of the symmetric algebra <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 <mo>(</mo>\u0000 <mi>E</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathcal {S}(E)$</annotation>\u0000 </semantics></math> and consider the ideal <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$mathcal {A}$</annotation>\u0000 </semantics></math> defining this quotient. In the case that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 <mo>(</mo>\u0000 <mi>E</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathcal {S}(E)$</annotation>\u0000 </semantics></math> is a complete intersection ring, we employ a duality between <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$mathcal {A}$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>S</mi>\u0000 <mo>(</mo>\u0000 <mi>E</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathcal {S}(E)$</annotation>\u0000 </semantics></math> in order to study the Rees ring <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>R</mi>\u0000 <mo>(</mo>\u0000 <mi>E</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathcal {R}(E)$</annotation>\u0000 </semantics></math> in multiple settings. In particular, when <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$R$</annotation>\u0000 </semantics></math> is a complete intersection ring defined by quadrics, we consider its module of Kähler differentials <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>Ω</mi>\u0000 <mrow>\u0000 <mi>R</mi>\u0000 <mo>/</mo>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </msub>\u0000 <annotation>$Omega _{R/k}$</annotation>\u0000","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 10","pages":"3394-3416"},"PeriodicalIF":0.8,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145273078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectral convergence of random regular graphs: Chebyshev polynomials, non-backtracking walks, and unitary-color extensions 随机正则图的谱收敛性:切比雪夫多项式、非回溯行走和一元色扩展
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-09-28 DOI: 10.1002/mana.70046
Yulin Gong, Wenbo Li, Shiping Liu
{"title":"Spectral convergence of random regular graphs: Chebyshev polynomials, non-backtracking walks, and unitary-color extensions","authors":"Yulin Gong, Wenbo Li, Shiping Liu","doi":"10.1002/mana.70046","DOIUrl":"https://doi.org/10.1002/mana.70046","url":null,"abstract":"<p>In this paper, we extend a criterion of Sodin on the convergence of graph spectral measures to regular graphs of growing degree. As a result, we show that for a sequence of random <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>q</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <mo>+</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(q_n+1)$</annotation>\u0000 </semantics></math>-regular graphs <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>G</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <annotation>$G_n$</annotation>\u0000 </semantics></math> with <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math> vertices, if <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>q</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <mo>=</mo>\u0000 <msup>\u0000 <mi>n</mi>\u0000 <mrow>\u0000 <mi>o</mi>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$q_n = n^{o(1)}$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>q</mi>\u0000 <mi>n</mi>\u0000 </msub>\u0000 <annotation>$q_n$</annotation>\u0000 </semantics></math> tends to infinity, the normalized spectral measure converges almost surely in <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-Wasserstein distance to the semicircle distribution for any <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 <mo>∈</mo>\u0000 <mo>[</mo>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mi>∞</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$p in [1, infty)$</annotation>\u0000 </semantics></math>. This strengthens a result of Dumitriu and Pal. Many of the results are also extended to unitary-colored regular graphs. For example, we give a short proof of the weak convergence to the Kesten–McKay distribution for the normalized spectral measures of random <span></span><math>\u0000 <semantics>\u0000 <mi>N</mi>\u0000 <annotation>$N$</annotation>\u0000 </semantics></math>-lifts. This result is derived by generalizing a formula of Friedman involving Chebyshev polynomials and non-","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 10","pages":"3417-3439"},"PeriodicalIF":0.8,"publicationDate":"2025-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145273056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
General type results for moduli of deformation generalised Kummer varieties 广义Kummer变形模量的一般类型结果
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-09-26 DOI: 10.1002/mana.70043
Matthew Dawes
{"title":"General type results for moduli of deformation generalised Kummer varieties","authors":"Matthew Dawes","doi":"10.1002/mana.70043","DOIUrl":"https://doi.org/10.1002/mana.70043","url":null,"abstract":"<p>In Dawes [Algebr. Geom. 12(2025), no. 3, 601–660], families of orthogonal modular varieties <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>F</mi>\u0000 <mo>(</mo>\u0000 <mi>Γ</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathcal {F}(Gamma)$</annotation>\u0000 </semantics></math> associated with moduli spaces of compact hyperkähler manifolds of deformation generalized Kummer type (also known as <i>“deformation generalized Kummer varieties”</i>) were studied. The orthogonal modular varieties were defined for an even integer <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>d</mi>\u0000 </mrow>\u0000 <annotation>$2d$</annotation>\u0000 </semantics></math>, corresponding to the degree of polarization of the associated hyperkähler manifolds. It was shown in Dawes [Algebr. Geom. 12(2025), no. 3, 601–660] that the modular varieties are of general type when <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>d</mi>\u0000 </mrow>\u0000 <annotation>$2d$</annotation>\u0000 </semantics></math> is square-free and sufficiently large. The purpose of this paper is to show that the square-free condition can be removed.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 10","pages":"3376-3393"},"PeriodicalIF":0.8,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145273076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On discrete subgroups of the complex unit ball 复单位球的离散子群
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-09-25 DOI: 10.1002/mana.70037
Aeryeong Seo
{"title":"On discrete subgroups of the complex unit ball","authors":"Aeryeong Seo","doi":"10.1002/mana.70037","DOIUrl":"https://doi.org/10.1002/mana.70037","url":null,"abstract":"<p>In this paper, we study conditions for a discrete subgroup of the automorphism group of the <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>-dimensional complex unit ball to be of convergence type or second kind, connecting these classifications to the existence of Green's functions and subharmonic or harmonic functions on its quotient space. Furthermore, we extend the definitions of convergence and divergence types to bounded symmetric domains, introducing a Poincaré series and providing a new criterion for discrete subgroups acting on these domains.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 10","pages":"3272-3286"},"PeriodicalIF":0.8,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.70037","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145272866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The three-dimensional Seiberg–Witten equations for 3 / 2 $3/2$ -spinors: A compactness theorem 3/2$ 3/2$旋量的三维Seiberg-Witten方程:一个紧致定理
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-09-20 DOI: 10.1002/mana.70042
Ahmad Reza Haj Saeedi Sadegh, Minh Lam Nguyen
{"title":"The three-dimensional Seiberg–Witten equations for \u0000 \u0000 \u0000 3\u0000 /\u0000 2\u0000 \u0000 $3/2$\u0000 -spinors: A compactness theorem","authors":"Ahmad Reza Haj Saeedi Sadegh,&nbsp;Minh Lam Nguyen","doi":"10.1002/mana.70042","DOIUrl":"https://doi.org/10.1002/mana.70042","url":null,"abstract":"<p>The Rarita-Schwinger–Seiberg-Witten (RS–SW) equations are defined similarly to the classical Seiberg–Witten equations, where a geometric non–Dirac-type operator replaces the Dirac operator called the Rarita–Schwinger operator. In dimension 4, the RS–SW equation was first considered by the second author (Nguyen [J. Geom. Anal. 33(2023), no. 10, 336]). The variational approach will also give us a three-dimensional version of the equations. The RS–SW equations share some features with the multiple-spinor Seiberg–Witten equations, where the moduli space of solutions could be noncompact. In this paper, we prove a compactness theorem regarding the moduli space of solutions of the RS–SW equations defined on 3-manifolds.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 10","pages":"3331-3375"},"PeriodicalIF":0.8,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.70042","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145272771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A large scaling property of level sets for degenerate p $p$ -Laplacian equations with logarithmic BMO matrix weights 具有对数BMO矩阵权值的退化p$ p$ -拉普拉斯方程的水平集的大尺度性质
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-09-20 DOI: 10.1002/mana.70039
Thanh-Nhan Nguyen, Minh-Phuong Tran
{"title":"A large scaling property of level sets for degenerate \u0000 \u0000 p\u0000 $p$\u0000 -Laplacian equations with logarithmic BMO matrix weights","authors":"Thanh-Nhan Nguyen,&nbsp;Minh-Phuong Tran","doi":"10.1002/mana.70039","DOIUrl":"https://doi.org/10.1002/mana.70039","url":null,"abstract":"<p>In this study, we deal with generalized regularity properties for solutions to <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math>-Laplace equations with degenerate matrix weights. It has been already observed in previous interesting works that gaining Calderón–Zygmund estimates for nonlinear equations with degenerate weights under the so-called <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>log</mi>\u0000 <mi>-</mi>\u0000 <mi>BMO</mi>\u0000 </mrow>\u0000 <annotation>$logtext{-}mathrm{BMO}$</annotation>\u0000 </semantics></math> condition and minimal regularity assumption on the boundary. In this paper, we also follow this direction and extend general gradient estimates for level sets of the gradient of solutions up to more subtle function spaces. In particular, we construct a covering of the super-level sets of the spatial gradient <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>|</mo>\u0000 <mo>∇</mo>\u0000 <mi>u</mi>\u0000 <mo>|</mo>\u0000 </mrow>\u0000 <annotation>$|nabla u|$</annotation>\u0000 </semantics></math> with respect to a large scaling parameter via fractional maximal operators.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 10","pages":"3287-3306"},"PeriodicalIF":0.8,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145272770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recurrence and transience for non-Archimedean and directed graphs 非阿基米德图和有向图的递归性和暂态性
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-09-18 DOI: 10.1002/mana.70040
Matthias Keller, Anna Muranova
{"title":"Recurrence and transience for non-Archimedean and directed graphs","authors":"Matthias Keller,&nbsp;Anna Muranova","doi":"10.1002/mana.70040","DOIUrl":"https://doi.org/10.1002/mana.70040","url":null,"abstract":"<p>We introduce notions of recurrence and transience for graphs over a non-Archimedean ordered field. To achieve this, we establish a connection between these graphs and random walks on directed graphs over the reals. In particular, we give a characterization of the real directed graphs which can arise in such a way. As a main result, we give characterization for recurrence and transience in terms of a quantity related to the capacity.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 10","pages":"3307-3330"},"PeriodicalIF":0.8,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145273050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the optimization of the first weighted eigenvalue of the fractional Laplacian 分数阶拉普拉斯算子第一加权特征值的优化问题
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-09-13 DOI: 10.1002/mana.70036
Mrityunjoy Ghosh
{"title":"On the optimization of the first weighted eigenvalue of the fractional Laplacian","authors":"Mrityunjoy Ghosh","doi":"10.1002/mana.70036","DOIUrl":"https://doi.org/10.1002/mana.70036","url":null,"abstract":"<p>In this paper, we consider the minimization problem for the first eigenvalue of the fractional Laplacian with respect to the weight functions lying in the rearrangement classes of fixed weight functions. We prove the existence of minimizing weights in the rearrangement classes of weight functions satisfying some assumptions. Also, we provide characterizations of these minimizing weights in terms of the eigenfunctions. Furthermore, we establish various qualitative properties, such as Steiner symmetry, radial symmetry, foliated Schwarz symmetry, etc., of the minimizing weights and corresponding eigenfunctions.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 10","pages":"3251-3271"},"PeriodicalIF":0.8,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145272834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equidistribution of the eigenvalues of Hecke operators Hecke算子特征值的等分布
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-08-21 DOI: 10.1002/mana.70033
Dohoon Choi, Min Lee, Youngmin Lee, Subong Lim
{"title":"Equidistribution of the eigenvalues of Hecke operators","authors":"Dohoon Choi,&nbsp;Min Lee,&nbsp;Youngmin Lee,&nbsp;Subong Lim","doi":"10.1002/mana.70033","DOIUrl":"https://doi.org/10.1002/mana.70033","url":null,"abstract":"<p>In this paper, we prove the equidistribution of the Hecke eigenvalues of Maass forms over an arbitrary number field at a fixed prime ideal, with respect to the Sato–Tate measure. As an application, we obtain that the proportion of Maass forms that do not satisfy the Ramanujan–Petersson conjecture at a fixed prime ideal is 0.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 9","pages":"3210-3246"},"PeriodicalIF":0.8,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145038408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplicity and asymptotic behavior of normalized solutions for fourth-order equations of the Kirchhoff type Kirchhoff型四阶方程归一化解的多重性和渐近性
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-08-18 DOI: 10.1002/mana.70031
Tao Han, Hong-Rui Sun, Zhen-Feng Jin
{"title":"Multiplicity and asymptotic behavior of normalized solutions for fourth-order equations of the Kirchhoff type","authors":"Tao Han,&nbsp;Hong-Rui Sun,&nbsp;Zhen-Feng Jin","doi":"10.1002/mana.70031","DOIUrl":"https://doi.org/10.1002/mana.70031","url":null,"abstract":"<p>In this paper, we study the following fourth-order equation of the Kirchhoff type\u0000\u0000 </p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 9","pages":"3172-3190"},"PeriodicalIF":0.8,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145038102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信