{"title":"Orlicz空间中嵌入的最优性","authors":"Tomáš Beránek","doi":"10.1002/mana.12036","DOIUrl":null,"url":null,"abstract":"<p>Working with function spaces in various branches of mathematical analysis introduces optimality problems, where the question of choosing a function space both accessible and expressive becomes a nontrivial exercise. A good middle ground is provided by Orlicz spaces, parameterized by a single Young function and thus accessible, yet expansive. In this work, we study optimality problems on Sobolev embeddings in the so-called Maz'ya classes of Euclidean domains which are defined through their isoperimetric behavior. In particular, we prove the non-existence of optimal Orlicz spaces in certain Orlicz–Sobolev embeddings in a limiting (critical) state, whose pivotal special case is the celebrated embedding of Brezis and Wainger for John domains.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 7","pages":"2380-2400"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.12036","citationCount":"0","resultStr":"{\"title\":\"Optimality of embeddings in Orlicz spaces\",\"authors\":\"Tomáš Beránek\",\"doi\":\"10.1002/mana.12036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Working with function spaces in various branches of mathematical analysis introduces optimality problems, where the question of choosing a function space both accessible and expressive becomes a nontrivial exercise. A good middle ground is provided by Orlicz spaces, parameterized by a single Young function and thus accessible, yet expansive. In this work, we study optimality problems on Sobolev embeddings in the so-called Maz'ya classes of Euclidean domains which are defined through their isoperimetric behavior. In particular, we prove the non-existence of optimal Orlicz spaces in certain Orlicz–Sobolev embeddings in a limiting (critical) state, whose pivotal special case is the celebrated embedding of Brezis and Wainger for John domains.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 7\",\"pages\":\"2380-2400\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.12036\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.12036\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12036","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Working with function spaces in various branches of mathematical analysis introduces optimality problems, where the question of choosing a function space both accessible and expressive becomes a nontrivial exercise. A good middle ground is provided by Orlicz spaces, parameterized by a single Young function and thus accessible, yet expansive. In this work, we study optimality problems on Sobolev embeddings in the so-called Maz'ya classes of Euclidean domains which are defined through their isoperimetric behavior. In particular, we prove the non-existence of optimal Orlicz spaces in certain Orlicz–Sobolev embeddings in a limiting (critical) state, whose pivotal special case is the celebrated embedding of Brezis and Wainger for John domains.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index