Busemann functions and uniformization of Gromov hyperbolic spaces

IF 0.8 3区 数学 Q2 MATHEMATICS
Qingshan Zhou, Saminathan Ponnusamy, Antti Rasila
{"title":"Busemann functions and uniformization of Gromov hyperbolic spaces","authors":"Qingshan Zhou,&nbsp;Saminathan Ponnusamy,&nbsp;Antti Rasila","doi":"10.1002/mana.12017","DOIUrl":null,"url":null,"abstract":"<p>The uniformization theory of Gromov hyperbolic spaces investigated by Bonk, Heinonen, and Koskela, generalizes the case where a classical Poincaré ball type model is used as the starting point. In this paper, we develop this approach in the case where the underlying domain is unbounded, corresponding to the classical Poincaré half-space model. More precisely, we study conformal densities via Busemann functions on Gromov hyperbolic spaces and prove that the deformed spaces are unbounded uniform spaces. Furthermore, we show that there is a one-to-one correspondence between the bilipschitz classes of proper geodesic Gromov hyperbolic spaces that are roughly starlike with respect to a point on the Gromov boundary and the quasisimilarity classes of unbounded locally compact uniform spaces. Our result can be understood as an unbounded counterpart of the main result of Bonk, Heinonen, and Koskela, <i>Uniformizing Gromov hyperbolic spaces</i>, Astérisque. <b>270</b> (2001).</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 7","pages":"2152-2176"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12017","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The uniformization theory of Gromov hyperbolic spaces investigated by Bonk, Heinonen, and Koskela, generalizes the case where a classical Poincaré ball type model is used as the starting point. In this paper, we develop this approach in the case where the underlying domain is unbounded, corresponding to the classical Poincaré half-space model. More precisely, we study conformal densities via Busemann functions on Gromov hyperbolic spaces and prove that the deformed spaces are unbounded uniform spaces. Furthermore, we show that there is a one-to-one correspondence between the bilipschitz classes of proper geodesic Gromov hyperbolic spaces that are roughly starlike with respect to a point on the Gromov boundary and the quasisimilarity classes of unbounded locally compact uniform spaces. Our result can be understood as an unbounded counterpart of the main result of Bonk, Heinonen, and Koskela, Uniformizing Gromov hyperbolic spaces, Astérisque. 270 (2001).

Busemann函数与Gromov双曲空间的一致化
由Bonk, Heinonen和Koskela研究的Gromov双曲空间的均匀化理论推广了使用经典poincar球型模型作为起点的情况。在本文中,我们在基础域无界的情况下发展了这种方法,对应于经典的庞卡罗半空间模型。更准确地说,我们利用Busemann函数研究了Gromov双曲空间上的共形密度,并证明了变形空间是无界均匀空间。进一步,我们证明了在Gromov边界上的一点近似星形的固有测地Gromov双曲空间的bilipschitz类与无界局部紧一致空间的拟相似类之间存在一一对应关系。我们的结果可以理解为Bonk, Heinonen和Koskela的主要结果的无界对应物,统一Gromov双曲空间,ast risque。270(2001)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信