Correlations of fractions whose denominators are products of primes

IF 0.8 3区 数学 Q2 MATHEMATICS
Meijie Lu
{"title":"Correlations of fractions whose denominators are products of primes","authors":"Meijie Lu","doi":"10.1002/mana.12027","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we focus on the pair correlation of fractions whose denominators are products of primes. We show that the limiting pair correlation function of such fractions on any short interval <span></span><math>\n <semantics>\n <mrow>\n <mi>I</mi>\n <mo>⊂</mo>\n <mo>[</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mo>]</mo>\n </mrow>\n <annotation>${\\bf I}\\subset [0,1]$</annotation>\n </semantics></math> exists and is independent of <span></span><math>\n <semantics>\n <mi>I</mi>\n <annotation>${\\bf I}$</annotation>\n </semantics></math>. Furthermore, we use this result to compute the pair correlation function of the angles of elements in specific types of regions.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 7","pages":"2263-2281"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12027","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we focus on the pair correlation of fractions whose denominators are products of primes. We show that the limiting pair correlation function of such fractions on any short interval I [ 0 , 1 ] ${\bf I}\subset [0,1]$ exists and is independent of I ${\bf I}$ . Furthermore, we use this result to compute the pair correlation function of the angles of elements in specific types of regions.

分母为素数乘积的分数的相关性
本文研究了分母为素数积的分数的对相关问题。我们证明了在任意短区间I∧[0,1]$ {\bf I}\子集[0,1]$上存在这种分数的极限对相关函数,并且与I ${\bf I}$无关。进一步,我们利用这一结果计算了特定类型区域中元素角度的对相关函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信