{"title":"Carleson measures on domains in Heisenberg groups","authors":"Tomasz Adamowicz, Marcin Gryszówka","doi":"10.1002/mana.12038","DOIUrl":null,"url":null,"abstract":"<p>We study the Carleson measures on nontangentially accessible (NTA) and admissible for the Dirichlet problem (ADP) domains in the Heisenberg groups <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {H}^n$</annotation>\n </semantics></math> and provide two characterizations of such measures: (1) in terms of the level sets of subelliptic harmonic functions and (2) via the 1-quasiconformal family of mappings on the Korányi–Reimann unit ball. Moreover, we establish the <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <annotation>$L^2$</annotation>\n </semantics></math>-bounds for the square function <span></span><math>\n <semantics>\n <msub>\n <mi>S</mi>\n <mi>α</mi>\n </msub>\n <annotation>$S_{\\alpha }$</annotation>\n </semantics></math> of a subelliptic harmonic function and the Carleson measure estimates for the BMO boundary data, both on NTA domains in <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {H}^n$</annotation>\n </semantics></math>. Finally, we prove a Fatou-type theorem on <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>ε</mi>\n <mo>,</mo>\n <mi>δ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\varepsilon, \\delta)$</annotation>\n </semantics></math>-domains in <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {H}^n$</annotation>\n </semantics></math>. Our work generalizes results by Capogna–Garofalo and Jerison–Kenig.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 7","pages":"2424-2452"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12038","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the Carleson measures on nontangentially accessible (NTA) and admissible for the Dirichlet problem (ADP) domains in the Heisenberg groups and provide two characterizations of such measures: (1) in terms of the level sets of subelliptic harmonic functions and (2) via the 1-quasiconformal family of mappings on the Korányi–Reimann unit ball. Moreover, we establish the -bounds for the square function of a subelliptic harmonic function and the Carleson measure estimates for the BMO boundary data, both on NTA domains in . Finally, we prove a Fatou-type theorem on -domains in . Our work generalizes results by Capogna–Garofalo and Jerison–Kenig.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index