束-聚合物流体相互作用体系的局部强解的存在性

IF 0.8 3区 数学 Q2 MATHEMATICS
Dominic Breit, Prince Romeo Mensah
{"title":"束-聚合物流体相互作用体系的局部强解的存在性","authors":"Dominic Breit,&nbsp;Prince Romeo Mensah","doi":"10.1002/mana.12030","DOIUrl":null,"url":null,"abstract":"<p>We construct a unique local strong solution to the finitely extensible nonlinear elastic (FENE) dumbbell model of Warner-type for an incompressible polymer fluid (described by the Navier–Stokes–Fokker–Planck equations) interacting with a flexible elastic shell. The latter occupies the flexible boundary of the polymer fluid domain and is modeled by a beam equation coupled through kinematic boundary conditions and the balance of forces. In the 2D case for the co-rotational Fokker–Planck model we obtain global-in-time strong solutions.</p><p>A main step in our approach is the proof of local well-posedness for just the solvent–structure system in higher-order topologies which is of independent interest. Different from most of the previous results in the literature, the reference spatial domain is an arbitrary smooth subset of <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>3</mn>\n </msup>\n <annotation>$\\mathbb {R}^3$</annotation>\n </semantics></math>, rather than a flat one. That is, we cover viscoelastic shells rather than elastic plates. Our results also supplement the existing literature on the Navier–Stokes–Fokker–Planck equations posed on a fixed bounded domain.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 7","pages":"2327-2379"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.12030","citationCount":"0","resultStr":"{\"title\":\"Existence of a local strong solution to the beam–polymeric fluid interaction system\",\"authors\":\"Dominic Breit,&nbsp;Prince Romeo Mensah\",\"doi\":\"10.1002/mana.12030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct a unique local strong solution to the finitely extensible nonlinear elastic (FENE) dumbbell model of Warner-type for an incompressible polymer fluid (described by the Navier–Stokes–Fokker–Planck equations) interacting with a flexible elastic shell. The latter occupies the flexible boundary of the polymer fluid domain and is modeled by a beam equation coupled through kinematic boundary conditions and the balance of forces. In the 2D case for the co-rotational Fokker–Planck model we obtain global-in-time strong solutions.</p><p>A main step in our approach is the proof of local well-posedness for just the solvent–structure system in higher-order topologies which is of independent interest. Different from most of the previous results in the literature, the reference spatial domain is an arbitrary smooth subset of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mn>3</mn>\\n </msup>\\n <annotation>$\\\\mathbb {R}^3$</annotation>\\n </semantics></math>, rather than a flat one. That is, we cover viscoelastic shells rather than elastic plates. Our results also supplement the existing literature on the Navier–Stokes–Fokker–Planck equations posed on a fixed bounded domain.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 7\",\"pages\":\"2327-2379\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.12030\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.12030\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12030","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文构造了不可压缩聚合物流体(由Navier-Stokes-Fokker-Planck方程描述)与柔性弹性壳相互作用的有限可扩展非线性弹性(FENE)哑铃模型warner型的唯一局部强解。后者占据聚合物流体域的柔性边界,并通过运动边界条件和力平衡耦合的梁方程来建模。在共旋转Fokker-Planck模型的二维情况下,我们得到了全局实时强解。我们方法的一个主要步骤是证明高阶拓扑中溶剂型结构体系的局部适定性,这是一个独立的研究方向。与以往文献中的大多数结果不同,参考空间域是r3 $\mathbb {R}^3$的任意光滑子集,而不是平坦子集。也就是说,我们覆盖粘弹性壳而不是弹性板。我们的结果也补充了已有的关于固定有界域上的Navier-Stokes-Fokker-Planck方程的文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of a local strong solution to the beam–polymeric fluid interaction system

We construct a unique local strong solution to the finitely extensible nonlinear elastic (FENE) dumbbell model of Warner-type for an incompressible polymer fluid (described by the Navier–Stokes–Fokker–Planck equations) interacting with a flexible elastic shell. The latter occupies the flexible boundary of the polymer fluid domain and is modeled by a beam equation coupled through kinematic boundary conditions and the balance of forces. In the 2D case for the co-rotational Fokker–Planck model we obtain global-in-time strong solutions.

A main step in our approach is the proof of local well-posedness for just the solvent–structure system in higher-order topologies which is of independent interest. Different from most of the previous results in the literature, the reference spatial domain is an arbitrary smooth subset of R 3 $\mathbb {R}^3$ , rather than a flat one. That is, we cover viscoelastic shells rather than elastic plates. Our results also supplement the existing literature on the Navier–Stokes–Fokker–Planck equations posed on a fixed bounded domain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信