Mathematische Nachrichten最新文献

筛选
英文 中文
Local H $H$ -principles for holomorphic partial differential relations 全纯偏微分关系的局部H$ H$原理
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-03-19 DOI: 10.1002/mana.202300492
Luis Giraldo, Guillermo Sánchez-Arellano
{"title":"Local \u0000 \u0000 H\u0000 $H$\u0000 -principles for holomorphic partial differential relations","authors":"Luis Giraldo,&nbsp;Guillermo Sánchez-Arellano","doi":"10.1002/mana.202300492","DOIUrl":"https://doi.org/10.1002/mana.202300492","url":null,"abstract":"<p>We introduce the notion of the realifications of an arbitrary <i>holomorphic partial differential relation</i> <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$mathcal {R}$</annotation>\u0000 </semantics></math>, that are partial differential relations associated with the restrictions of <span></span><math>\u0000 <semantics>\u0000 <mi>R</mi>\u0000 <annotation>$mathcal {R}$</annotation>\u0000 </semantics></math> to totally real submanifolds of maximal dimension. Our main result states that if any realification of an open holomorphic partial differential relation over a Stein manifold satisfies a relative to domain <span></span><math>\u0000 <semantics>\u0000 <mi>h</mi>\u0000 <annotation>$h$</annotation>\u0000 </semantics></math>-principle, then it is possible to deform any formal solution into one that is holonomic in a neighborhood of a Lagrangian skeleton of the Stein manifold. If the Stein manifold is an open Riemann surface or it has finite type, then that skeleton is independent of the formal solution. This yields the existence of local <span></span><math>\u0000 <semantics>\u0000 <mi>h</mi>\u0000 <annotation>$h$</annotation>\u0000 </semantics></math>-principles over that skeleton. These results broaden those obtained by Forstnerič and Slapar on holomorphic immersions, submersions, and complex contact structures for instance to holomorphic local <span></span><math>\u0000 <semantics>\u0000 <mi>h</mi>\u0000 <annotation>$h$</annotation>\u0000 </semantics></math>-principles for the corresponding version in the complex category of some other classical examples of distributions and structures in the smooth category such as complex even contact, complex Engel, and complex twisted locally conformal symplectic structures.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 5","pages":"1521-1548"},"PeriodicalIF":0.8,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143930303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reducibility of ultra-differentiable quasi-periodic linear systems 超可微拟周期线性系统的可约性
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-03-17 DOI: 10.1002/mana.202300122
Xiangyuan Zhang, Dongfeng Zhang
{"title":"Reducibility of ultra-differentiable quasi-periodic linear systems","authors":"Xiangyuan Zhang,&nbsp;Dongfeng Zhang","doi":"10.1002/mana.202300122","DOIUrl":"https://doi.org/10.1002/mana.202300122","url":null,"abstract":"&lt;p&gt;In ultra-differentiable classes, this paper studies the reducibility of the quasi-periodic linear system &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mover&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;mo&gt;̇&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mi&gt;ε&lt;/mi&gt;\u0000 &lt;mi&gt;Q&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;mo&gt;∈&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$dot{x}=(A+varepsilon Q(t))x,xin mathbb {R}^{d}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, where &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;annotation&gt;$A$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is a constant matrix with different eigenvalues &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mtext&gt;…&lt;/mtext&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$lambda =(lambda _{1},lambda _{2},ldots,lambda _{d})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;Q&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$Q(t)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is a ultra-differentiable quasi-periodic matrix with &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;r&lt;/mi&gt;\u0000 &lt;annotation&gt;$r$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; basic frequencies &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ω&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;ω&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;ω&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 ","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 5","pages":"1482-1495"},"PeriodicalIF":0.8,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143930472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Cauchy problem of three-dimensional compressible magneto-micropolar fluids with vacuum 三维真空可压缩磁微极流体的Cauchy问题
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-03-17 DOI: 10.1002/mana.202400144
Mingyu Zhang
{"title":"On the Cauchy problem of three-dimensional compressible magneto-micropolar fluids with vacuum","authors":"Mingyu Zhang","doi":"10.1002/mana.202400144","DOIUrl":"https://doi.org/10.1002/mana.202400144","url":null,"abstract":"<p>In this paper, we study the Cauchy problem of three-dimensional compressible magneto-micropolar fluids. Applying the energy method and the structural characteristics of the model, the global existence and uniqueness of classical solutions are established provided that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>∥</mo>\u0000 </mrow>\u0000 <msub>\u0000 <mi>B</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <msub>\u0000 <mo>∥</mo>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mn>3</mn>\u0000 </msup>\u0000 </msub>\u0000 <mo>+</mo>\u0000 <msub>\u0000 <mi>M</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$Vert mathbf { B}_0Vert _{L^3}+M_0$</annotation>\u0000 </semantics></math> is suitable small, where <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>B</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <annotation>$mathbf { B}_0$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>M</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <annotation>$M_0$</annotation>\u0000 </semantics></math> represent the initial magnetic field and upper bound of initial density. It is worth mentioning that both the vacuum states of initial density and the possible random largeness of initial energy are allowed. Thus, the results obtained particularly extend the one due to Wei et al., where the global well-posedness of smooth solutions with small perturbations of initial data was proved.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 5","pages":"1449-1481"},"PeriodicalIF":0.8,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143930471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The moduli space of left-invariant metrics on six-dimensional characteristically solvable nilmanifolds 六维特征可解零流形上左不变度量的模空间
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-03-17 DOI: 10.1002/mana.202400213
Isolda Cardoso, Ana Cosgaya, Silvio Reggiani
{"title":"The moduli space of left-invariant metrics on six-dimensional characteristically solvable nilmanifolds","authors":"Isolda Cardoso,&nbsp;Ana Cosgaya,&nbsp;Silvio Reggiani","doi":"10.1002/mana.202400213","DOIUrl":"https://doi.org/10.1002/mana.202400213","url":null,"abstract":"<p>A real Lie algebra is said to be characteristically solvable if its derivation algebra is solvable. We explicitly determine the moduli space of left-invariant metrics, up to isometric automorphism, for 6-dimensional nilmanifolds whose associated Lie algebra is characteristically solvable of triangular type. We also compute the corresponding full isometry groups. For each left-invariant metric on these nilmanifolds we compute the index and distribution of symmetry. In particular, we find the first known examples of Lie groups which do not admit a left-invariant metric with positive index of symmetry. As an application we study the index of symmetry of nilsoliton metrics. We prove that nilsoliton metrics detect the existence of left-invariant metrics with positive index of symmetry.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 5","pages":"1496-1520"},"PeriodicalIF":0.8,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143930502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizations of the Sobolev space H1 on the boundary of a strongly Lipschitz domain in 3-D 三维强Lipschitz域边界上Sobolev空间H1的表征
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-03-12 DOI: 10.1002/mana.202400282
Nathanael Skrepek
{"title":"Characterizations of the Sobolev space H1 on the boundary of a strongly Lipschitz domain in 3-D","authors":"Nathanael Skrepek","doi":"10.1002/mana.202400282","DOIUrl":"https://doi.org/10.1002/mana.202400282","url":null,"abstract":"<p>In this work, we investigate the Sobolev space <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>∂</mi>\u0000 <mi>Ω</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathrm{H}^{1}(partial Omega)$</annotation>\u0000 </semantics></math> on a strongly Lipschitz boundary <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>∂</mi>\u0000 <mi>Ω</mi>\u0000 </mrow>\u0000 <annotation>$partial Omega$</annotation>\u0000 </semantics></math>, that is, <span></span><math>\u0000 <semantics>\u0000 <mi>Ω</mi>\u0000 <annotation>$Omega$</annotation>\u0000 </semantics></math> is a strongly Lipschitz domain (not necessarily bounded). In most of the literature, this space is defined via charts and Sobolev spaces on flat domains. We show that there is a different approach via differential operators on <span></span><math>\u0000 <semantics>\u0000 <mi>Ω</mi>\u0000 <annotation>$Omega$</annotation>\u0000 </semantics></math> and a weak formulation directly on the boundary that leads to the same space. This second characterization of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>∂</mi>\u0000 <mi>Ω</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathrm{H}^{1}(partial Omega)$</annotation>\u0000 </semantics></math> is in particular of advantage, when it comes to traces of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 <mo>(</mo>\u0000 <mo>curl</mo>\u0000 <mo>,</mo>\u0000 <mi>Ω</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathrm{H}(operatorname{curl},Omega)$</annotation>\u0000 </semantics></math> vector fields.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 4","pages":"1342-1355"},"PeriodicalIF":0.8,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400282","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143809571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonstandard representation of the Dirichlet form and application to the comparison theorem 狄利克雷形式的非标准表示及其在比较定理中的应用
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-03-04 DOI: 10.1002/mana.202300246
Haosui Duanmu, Aaron Smith
{"title":"Nonstandard representation of the Dirichlet form and application to the comparison theorem","authors":"Haosui Duanmu,&nbsp;Aaron Smith","doi":"10.1002/mana.202300246","DOIUrl":"https://doi.org/10.1002/mana.202300246","url":null,"abstract":"<p>The Dirichlet form is a generalization of the Laplacian, heavily used in the study of many diffusion-like processes. In this paper, we present a <i>nonstandard representation theorem</i> for the Dirichlet form, showing that the usual Dirichlet form can be well-approximated by a <i>hyperfinite</i> sum. One of the main motivations for such a result is to provide a tool for directly translating results about Dirichlet forms on finite or countable state spaces to results on more general state spaces, without having to translate the details of the proofs. As an application, we compare the Dirichlet forms of two general Markov processes by applying the transfer of the well-known comparison theorem for finite Markov processes.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 4","pages":"1167-1183"},"PeriodicalIF":0.8,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300246","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143809762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
M $M$ -Ideals in real operator algebras M$ M$ -实算子代数中的理想
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-03-04 DOI: 10.1002/mana.202400227
David P. Blecher, Matthew Neal, Antonio M. Peralta, Shanshan Su
{"title":"M\u0000 $M$\u0000 -Ideals in real operator algebras","authors":"David P. Blecher,&nbsp;Matthew Neal,&nbsp;Antonio M. Peralta,&nbsp;Shanshan Su","doi":"10.1002/mana.202400227","DOIUrl":"https://doi.org/10.1002/mana.202400227","url":null,"abstract":"<p>In a recent paper, we showed that a subspace of a real <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>JBW</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <annotation>${rm JBW}^*$</annotation>\u0000 </semantics></math>-triple is an <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math>-summand if and only if it is a <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>weak</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <annotation>${rm weak}^*$</annotation>\u0000 </semantics></math>-closed triple ideal. As a consequence, <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math>-ideals of real <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>JB</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <annotation>${rm JB}^*$</annotation>\u0000 </semantics></math>-triples, including real <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <annotation>${rm C}^*$</annotation>\u0000 </semantics></math>-algebras, real <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>JB</mi>\u0000 <mo>∗</mo>\u0000 </msup>\u0000 <annotation>${rm JB}^*$</annotation>\u0000 </semantics></math>-algebras and real TROs, correspond to norm-closed triple ideals. In this paper, we extend this result by identifying the <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math>-ideals in (possibly non-self-adjoint) real operator algebras and Jordan operator algebras. The argument for this is necessarily different. We also give simple characterizations of one-sided <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math>-ideals in real operator algebras, and give some applications to that theory.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 4","pages":"1328-1341"},"PeriodicalIF":0.8,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143809763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A characterization of some finite simple groups by their character codegrees 一些有限单群的特征余度刻画
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-03-04 DOI: 10.1002/mana.202400283
Hung P. Tong-Viet
{"title":"A characterization of some finite simple groups by their character codegrees","authors":"Hung P. Tong-Viet","doi":"10.1002/mana.202400283","DOIUrl":"https://doi.org/10.1002/mana.202400283","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;annotation&gt;$G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be a finite group and let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;χ&lt;/mi&gt;\u0000 &lt;annotation&gt;$chi$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be a complex irreducible character of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;annotation&gt;$G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. The codegree of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;χ&lt;/mi&gt;\u0000 &lt;annotation&gt;$chi$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is defined by &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;cod&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;χ&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 &lt;mi&gt;ker&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;χ&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mo&gt;|&lt;/mo&gt;\u0000 &lt;mo&gt;/&lt;/mo&gt;\u0000 &lt;mi&gt;χ&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$textrm {cod}(chi)=|G:textrm {ker}(chi)|/chi (1)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, where &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;ker&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;χ&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$textrm {ker}(chi)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is the kernel of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;χ&lt;/mi&gt;\u0000 &lt;annotation&gt;$chi$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. In this paper, we show that if &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;annotation&gt;$H$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is a finite simple exceptional group of Lie type or a finite simple projective special linear group and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;annotation&gt;$G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is any finite group such that the character codegree sets of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;annotation&gt;$G$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;annotation&gt;$H$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; coincide, then &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;ann","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 4","pages":"1356-1369"},"PeriodicalIF":0.8,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400283","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143809664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hodge loci associated with linear subspaces intersecting in codimension one 与余维为1相交的线性子空间相关联的霍奇轨迹
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-02-28 DOI: 10.1002/mana.202400066
Remke Kloosterman
{"title":"Hodge loci associated with linear subspaces intersecting in codimension one","authors":"Remke Kloosterman","doi":"10.1002/mana.202400066","DOIUrl":"https://doi.org/10.1002/mana.202400066","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;mo&gt;⊂&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;P&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$Xsubset mathbf {P}^{2k+1}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be a smooth hypersurface containing two &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;annotation&gt;$k$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-dimensional linear spaces &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Π&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Π&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$Pi _1,Pi _2$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, such that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;dim&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Π&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;∩&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Π&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$dim Pi _1cap Pi _2=k-1$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. In this paper, we study the question whether the Hodge loci &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;NL&lt;/mo&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;[&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Π&lt;/mi&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;]&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;mi&gt;λ&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;[&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;Π&lt;/mi&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;]&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$operatorname{NL}([Pi _1]+lambda [Pi _2])$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 ","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 4","pages":"1220-1229"},"PeriodicalIF":0.8,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400066","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143809959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variable Hardy spaces on spaces of homogeneous type and applications to variable Hardy spaces associated with elliptic operators having Robin boundary conditions on Lipschitz domains 齐次型空间上的变Hardy空间及其在Lipschitz域上具有Robin边界条件的椭圆算子的变Hardy空间中的应用
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-02-27 DOI: 10.1002/mana.202400300
Xiong Liu, Wenhua Wang
{"title":"Variable Hardy spaces on spaces of homogeneous type and applications to variable Hardy spaces associated with elliptic operators having Robin boundary conditions on Lipschitz domains","authors":"Xiong Liu,&nbsp;Wenhua Wang","doi":"10.1002/mana.202400300","DOIUrl":"https://doi.org/10.1002/mana.202400300","url":null,"abstract":"&lt;p&gt;Let &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;μ&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$(mathcal {X},d,mu)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; be a space of homogeneous type with &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;μ&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mo&gt;&lt;&lt;/mo&gt;\u0000 &lt;mi&gt;∞&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$mu (mathcal {X})&lt;infty$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mo&gt;·&lt;/mo&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;mo&gt;→&lt;/mo&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;∞&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$p(cdot):mathcal {X}rightarrow (0,infty)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; a variable exponent function satisfying &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mo&gt;&lt;&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;&lt;&lt;/mo&gt;\u0000 &lt;mi&gt;∞&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$0&lt;p_-&lt;infty$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, where &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;:&lt;/mo&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mi&gt;ess&lt;/mi&gt;\u0000 &lt;mspace&gt;&lt;/mspace&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;inf&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;mo&gt;∈&lt;/mo&gt;\u0000 &lt;mi&gt;X&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;x&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$p_-:=mathrm{ess inf}_{xin mathcal {X}}p(x)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. Assume that &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;L&lt;/mi&gt;\u0000 &lt;annotation&gt;$L$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is a nonnegative self-adjoint operator on &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 4","pages":"1370-1440"},"PeriodicalIF":0.8,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143809954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信