Calderón reproducing formulae on product spaces of homogeneous type and their applications

IF 0.8 3区 数学 Q2 MATHEMATICS
Ziyi He, Xianjie Yan, Dachun Yang
{"title":"Calderón reproducing formulae on product spaces of homogeneous type and their applications","authors":"Ziyi He,&nbsp;Xianjie Yan,&nbsp;Dachun Yang","doi":"10.1002/mana.12014","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>X</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>d</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>μ</mi>\n <mn>1</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(X_1,d_1,\\mu _1)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>X</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>d</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>μ</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(X_2,d_2,\\mu _2)$</annotation>\n </semantics></math> be two spaces of homogeneous type in the sense of R. R. Coifman and G. Weiss. In this article, the authors first introduce spaces of product test functions and product approximations of the identity with exponential decay on the product space <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>X</mi>\n <mn>1</mn>\n </msub>\n <mo>×</mo>\n <msub>\n <mi>X</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$X_1\\times X_2$</annotation>\n </semantics></math>. Using these, the authors establish product continuous/discrete Calderón reproducing formulae. As applications, the Littlewood–Paley characterizations, respectively, in terms of the Lusin area function, the Littlewood–Paley <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math>-function, and the Littlewood–Paley <span></span><math>\n <semantics>\n <msubsup>\n <mi>g</mi>\n <mi>λ</mi>\n <mo>∗</mo>\n </msubsup>\n <annotation>$g^*_{\\lambda }$</annotation>\n </semantics></math>-function, of the Lebesgue space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>X</mi>\n <mn>1</mn>\n </msub>\n <mo>×</mo>\n <msub>\n <mi>X</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^p(X_1\\times X_2)$</annotation>\n </semantics></math> with any given <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$p\\in (1,\\infty)$</annotation>\n </semantics></math> are also given. Besides, the authors also obtain the boundedness of Calderón–Zygmund operators on product Lebesgue spaces. The novelty of this article is that all the results circumvent the reverse doubling condition of <span></span><math>\n <semantics>\n <msub>\n <mi>μ</mi>\n <mn>1</mn>\n </msub>\n <annotation>$\\mu _1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>μ</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\mu _2$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <msub>\n <mi>d</mi>\n <mn>1</mn>\n </msub>\n <annotation>$d_1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>d</mi>\n <mn>2</mn>\n </msub>\n <annotation>$d_2$</annotation>\n </semantics></math> are only assumed to be quasi-metrics, and these results lay a foundation for the further development of the real-variable theory of function spaces on product spaces of homogeneous type.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 6","pages":"1839-1921"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12014","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let ( X 1 , d 1 , μ 1 ) $(X_1,d_1,\mu _1)$ and ( X 2 , d 2 , μ 2 ) $(X_2,d_2,\mu _2)$ be two spaces of homogeneous type in the sense of R. R. Coifman and G. Weiss. In this article, the authors first introduce spaces of product test functions and product approximations of the identity with exponential decay on the product space X 1 × X 2 $X_1\times X_2$ . Using these, the authors establish product continuous/discrete Calderón reproducing formulae. As applications, the Littlewood–Paley characterizations, respectively, in terms of the Lusin area function, the Littlewood–Paley g $g$ -function, and the Littlewood–Paley g λ $g^*_{\lambda }$ -function, of the Lebesgue space L p ( X 1 × X 2 ) $L^p(X_1\times X_2)$ with any given p ( 1 , ) $p\in (1,\infty)$ are also given. Besides, the authors also obtain the boundedness of Calderón–Zygmund operators on product Lebesgue spaces. The novelty of this article is that all the results circumvent the reverse doubling condition of μ 1 $\mu _1$ and μ 2 $\mu _2$ , d 1 $d_1$ and d 2 $d_2$ are only assumed to be quasi-metrics, and these results lay a foundation for the further development of the real-variable theory of function spaces on product spaces of homogeneous type.

Calderón齐次型积空间上的公式再现及其应用
设(x1, d1,μ 1) $(X_1,d_1,\mu _1)$和(x2, d2,μ 2) $(X_2,d_2,\mu _2)$是R. R. Coifman和G. Weiss意义上的两个齐次型空间。在本文中,作者首先在乘积空间x1 × x2 $X_1\times X_2$上引入了指数衰减恒等式的乘积检验函数空间和乘积逼近。在此基础上,建立了乘积连续/离散Calderón复现公式。作为应用,分别用Lusin面积函数、Littlewood-Paley g $g$ -函数和Littlewood-Paley g λ∗$g^*_{\lambda }$ -函数表示的Littlewood-Paley表征,勒贝格空间lp (x1 × x2) $L^p(X_1\times X_2)$的P∈(1,∞)$p\in (1,\infty)$。此外,作者还得到了Calderón-Zygmund算子在积Lebesgue空间上的有界性。本文的新颖之处在于所有的结果都绕过了μ 1 $\mu _1$和μ 2 $\mu _2$的反向加倍条件。d1 $d_1$和d2 $d_2$仅假设为拟度量,这些结果为齐次型积空间上函数空间的实变量理论的进一步发展奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信