{"title":"Calderón齐次型积空间上的公式再现及其应用","authors":"Ziyi He, Xianjie Yan, Dachun Yang","doi":"10.1002/mana.12014","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>X</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>d</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>μ</mi>\n <mn>1</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(X_1,d_1,\\mu _1)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>X</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>d</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>μ</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(X_2,d_2,\\mu _2)$</annotation>\n </semantics></math> be two spaces of homogeneous type in the sense of R. R. Coifman and G. Weiss. In this article, the authors first introduce spaces of product test functions and product approximations of the identity with exponential decay on the product space <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>X</mi>\n <mn>1</mn>\n </msub>\n <mo>×</mo>\n <msub>\n <mi>X</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$X_1\\times X_2$</annotation>\n </semantics></math>. Using these, the authors establish product continuous/discrete Calderón reproducing formulae. As applications, the Littlewood–Paley characterizations, respectively, in terms of the Lusin area function, the Littlewood–Paley <span></span><math>\n <semantics>\n <mi>g</mi>\n <annotation>$g$</annotation>\n </semantics></math>-function, and the Littlewood–Paley <span></span><math>\n <semantics>\n <msubsup>\n <mi>g</mi>\n <mi>λ</mi>\n <mo>∗</mo>\n </msubsup>\n <annotation>$g^*_{\\lambda }$</annotation>\n </semantics></math>-function, of the Lebesgue space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>X</mi>\n <mn>1</mn>\n </msub>\n <mo>×</mo>\n <msub>\n <mi>X</mi>\n <mn>2</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^p(X_1\\times X_2)$</annotation>\n </semantics></math> with any given <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$p\\in (1,\\infty)$</annotation>\n </semantics></math> are also given. Besides, the authors also obtain the boundedness of Calderón–Zygmund operators on product Lebesgue spaces. The novelty of this article is that all the results circumvent the reverse doubling condition of <span></span><math>\n <semantics>\n <msub>\n <mi>μ</mi>\n <mn>1</mn>\n </msub>\n <annotation>$\\mu _1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>μ</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\mu _2$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <msub>\n <mi>d</mi>\n <mn>1</mn>\n </msub>\n <annotation>$d_1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>d</mi>\n <mn>2</mn>\n </msub>\n <annotation>$d_2$</annotation>\n </semantics></math> are only assumed to be quasi-metrics, and these results lay a foundation for the further development of the real-variable theory of function spaces on product spaces of homogeneous type.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 6","pages":"1839-1921"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calderón reproducing formulae on product spaces of homogeneous type and their applications\",\"authors\":\"Ziyi He, Xianjie Yan, Dachun Yang\",\"doi\":\"10.1002/mana.12014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>X</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>d</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>μ</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(X_1,d_1,\\\\mu _1)$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>X</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>d</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>μ</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(X_2,d_2,\\\\mu _2)$</annotation>\\n </semantics></math> be two spaces of homogeneous type in the sense of R. R. Coifman and G. Weiss. In this article, the authors first introduce spaces of product test functions and product approximations of the identity with exponential decay on the product space <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>X</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>×</mo>\\n <msub>\\n <mi>X</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$X_1\\\\times X_2$</annotation>\\n </semantics></math>. Using these, the authors establish product continuous/discrete Calderón reproducing formulae. As applications, the Littlewood–Paley characterizations, respectively, in terms of the Lusin area function, the Littlewood–Paley <span></span><math>\\n <semantics>\\n <mi>g</mi>\\n <annotation>$g$</annotation>\\n </semantics></math>-function, and the Littlewood–Paley <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>g</mi>\\n <mi>λ</mi>\\n <mo>∗</mo>\\n </msubsup>\\n <annotation>$g^*_{\\\\lambda }$</annotation>\\n </semantics></math>-function, of the Lebesgue space <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>X</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>×</mo>\\n <msub>\\n <mi>X</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^p(X_1\\\\times X_2)$</annotation>\\n </semantics></math> with any given <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$p\\\\in (1,\\\\infty)$</annotation>\\n </semantics></math> are also given. Besides, the authors also obtain the boundedness of Calderón–Zygmund operators on product Lebesgue spaces. The novelty of this article is that all the results circumvent the reverse doubling condition of <span></span><math>\\n <semantics>\\n <msub>\\n <mi>μ</mi>\\n <mn>1</mn>\\n </msub>\\n <annotation>$\\\\mu _1$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>μ</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\mu _2$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <msub>\\n <mi>d</mi>\\n <mn>1</mn>\\n </msub>\\n <annotation>$d_1$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>d</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$d_2$</annotation>\\n </semantics></math> are only assumed to be quasi-metrics, and these results lay a foundation for the further development of the real-variable theory of function spaces on product spaces of homogeneous type.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 6\",\"pages\":\"1839-1921\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.12014\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12014","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Calderón reproducing formulae on product spaces of homogeneous type and their applications
Let and be two spaces of homogeneous type in the sense of R. R. Coifman and G. Weiss. In this article, the authors first introduce spaces of product test functions and product approximations of the identity with exponential decay on the product space . Using these, the authors establish product continuous/discrete Calderón reproducing formulae. As applications, the Littlewood–Paley characterizations, respectively, in terms of the Lusin area function, the Littlewood–Paley -function, and the Littlewood–Paley -function, of the Lebesgue space with any given are also given. Besides, the authors also obtain the boundedness of Calderón–Zygmund operators on product Lebesgue spaces. The novelty of this article is that all the results circumvent the reverse doubling condition of and , and are only assumed to be quasi-metrics, and these results lay a foundation for the further development of the real-variable theory of function spaces on product spaces of homogeneous type.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index