Rodrigo A. H. M. Cabral, Michael Forger, Severino T. Melo
{"title":"Differential norms and Rieffel algebras","authors":"Rodrigo A. H. M. Cabral, Michael Forger, Severino T. Melo","doi":"10.1002/mana.12019","DOIUrl":null,"url":null,"abstract":"<p>We develop criteria to guarantee uniqueness of the <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mo>∗</mo>\n </msup>\n <annotation>${\\rm C}^*$</annotation>\n </semantics></math>-norm on a <span></span><math>\n <semantics>\n <mo>∗</mo>\n <annotation>$*$</annotation>\n </semantics></math>-algebra <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$\\mathcal {B}$</annotation>\n </semantics></math>. Nontrivial examples are provided by the noncommutative algebras of <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$\\mathcal {C}$</annotation>\n </semantics></math>-valued functions <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>S</mi>\n <mi>J</mi>\n <mi>C</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {S}_J^\\mathcal {C}(\\mathbb {R}^n)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>B</mi>\n <mi>J</mi>\n <mi>C</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {B}_J^\\mathcal {C}(\\mathbb {R}^n)$</annotation>\n </semantics></math> defined by M.A. Rieffel via a deformation quantization procedure, where <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$\\mathcal {C}$</annotation>\n </semantics></math> is a <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mo>∗</mo>\n </msup>\n <annotation>${\\rm C}^*$</annotation>\n </semantics></math>-algebra and <span></span><math>\n <semantics>\n <mi>J</mi>\n <annotation>$J$</annotation>\n </semantics></math> is a skew-symmetric linear transformation on <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math> with respect to which the usual pointwise product is deformed. In the process, we prove that the Fréchet <span></span><math>\n <semantics>\n <mo>∗</mo>\n <annotation>$*$</annotation>\n </semantics></math>-algebra topology of <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>B</mi>\n <mi>J</mi>\n <mi>C</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {B}_J^\\mathcal {C}(\\mathbb {R}^n)$</annotation>\n </semantics></math> can be generated by a sequence of submultiplicative <span></span><math>\n <semantics>\n <mo>∗</mo>\n <annotation>$*$</annotation>\n </semantics></math>-norms and that, if <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$\\mathcal {C}$</annotation>\n </semantics></math> is unital, this algebra is closed under the <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mi>∞</mi>\n </msup>\n <annotation>${\\rm C}^\\infty$</annotation>\n </semantics></math>-functional calculus of its <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mo>∗</mo>\n </msup>\n <annotation>${\\rm C}^*$</annotation>\n </semantics></math>-completion. We also show that the algebras <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>S</mi>\n <mi>J</mi>\n <mi>C</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {S}_J^\\mathcal {C}(\\mathbb {R}^n)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>B</mi>\n <mi>J</mi>\n <mi>C</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {B}_J^\\mathcal {C}(\\mathbb {R}^n)$</annotation>\n </semantics></math> are spectrally invariant in their respective <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mo>∗</mo>\n </msup>\n <annotation>${\\rm C}^*$</annotation>\n </semantics></math>-completions, when <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$\\mathcal {C}$</annotation>\n </semantics></math> is unital. As a corollary of our results, we obtain simple proofs of certain estimates in <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>B</mi>\n <mi>J</mi>\n <mi>C</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {B}_J^\\mathcal {C}(\\mathbb {R}^n)$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 7","pages":"2177-2203"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12019","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We develop criteria to guarantee uniqueness of the -norm on a -algebra . Nontrivial examples are provided by the noncommutative algebras of -valued functions and defined by M.A. Rieffel via a deformation quantization procedure, where is a -algebra and is a skew-symmetric linear transformation on with respect to which the usual pointwise product is deformed. In the process, we prove that the Fréchet -algebra topology of can be generated by a sequence of submultiplicative -norms and that, if is unital, this algebra is closed under the -functional calculus of its -completion. We also show that the algebras and are spectrally invariant in their respective -completions, when is unital. As a corollary of our results, we obtain simple proofs of certain estimates in .
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index