Semiclassical solutions for critical Schrödinger–Poisson systems involving multiple competing potentials

IF 0.8 3区 数学 Q2 MATHEMATICS
Lingzheng Kong, Haibo Chen
{"title":"Semiclassical solutions for critical Schrödinger–Poisson systems involving multiple competing potentials","authors":"Lingzheng Kong,&nbsp;Haibo Chen","doi":"10.1002/mana.12012","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a class of Schrödinger–Poisson system involving multiple competing potentials and critical Sobolev exponent is considered. Such a problem cannot be studied using the same argument for the nonlinear term with only a positive potential, because the weight potentials set <span></span><math>\n <semantics>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>Q</mi>\n <mi>i</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n <mo>|</mo>\n <mn>1</mn>\n <mo>≤</mo>\n <mi>i</mi>\n <mo>≤</mo>\n <mi>m</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$\\lbrace Q_i(x)|1\\le i \\le m\\rbrace$</annotation>\n </semantics></math> contains nonpositive, sign changing, and nonnegative elements. By introducing the ground energy function and subtle analysis, we first prove the existence of ground state solution <span></span><math>\n <semantics>\n <msub>\n <mi>v</mi>\n <mi>ε</mi>\n </msub>\n <annotation>$v_\\varepsilon$</annotation>\n </semantics></math> in the semiclassical limit via the Nehari manifold and concentration–compactness principle. Then we show that <span></span><math>\n <semantics>\n <msub>\n <mi>v</mi>\n <mi>ε</mi>\n </msub>\n <annotation>$v_\\varepsilon$</annotation>\n </semantics></math> converges to the ground state solution of the associated limiting problem and concentrates at a concrete set characterized by the potentials. At the same time, some properties for the ground state solution are also studied. Moreover, a sufficient condition for the nonexistence of the ground state solution is obtained.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 6","pages":"1808-1838"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12012","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a class of Schrödinger–Poisson system involving multiple competing potentials and critical Sobolev exponent is considered. Such a problem cannot be studied using the same argument for the nonlinear term with only a positive potential, because the weight potentials set { Q i ( x ) | 1 i m } $\lbrace Q_i(x)|1\le i \le m\rbrace$ contains nonpositive, sign changing, and nonnegative elements. By introducing the ground energy function and subtle analysis, we first prove the existence of ground state solution v ε $v_\varepsilon$ in the semiclassical limit via the Nehari manifold and concentration–compactness principle. Then we show that v ε $v_\varepsilon$ converges to the ground state solution of the associated limiting problem and concentrates at a concrete set characterized by the potentials. At the same time, some properties for the ground state solution are also studied. Moreover, a sufficient condition for the nonexistence of the ground state solution is obtained.

涉及多个竞争势的临界Schrödinger-Poisson系统的半经典解
本文考虑了一类含有多个竞争势和临界Sobolev指数的Schrödinger-Poisson系统。这样的问题不能用同样的方法来研究只有正势的非线性项,因为权势集qi {(x) | 1≤i≤m}$\lbrace Q_i(x)|1\le i \le m\rbrace$包含非正的、变号的,还有非负的元素。通过引入地面能量函数和精细分析,利用Nehari流形和集中紧致原理,首次证明了半经典极限下基态解v ε $v_\varepsilon$的存在性。然后证明了v ε $v_\varepsilon$收敛于相关极限问题的基态解,并集中于一个以势为特征的具体集。同时,对基态解的一些性质也进行了研究。此外,还得到了基态解不存在的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信