{"title":"具有3阶非辛自同构的K3s上的雅可比椭圆颤振","authors":"Felipe Zingali Meira","doi":"10.1002/mana.12018","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> be a K3 surface admitting a non-symplectic automorphism <span></span><math>\n <semantics>\n <mi>σ</mi>\n <annotation>$\\sigma$</annotation>\n </semantics></math> of order 3. Building on work by Garbagnati and Salgado, we classify the Jacobian elliptic fibrations on <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> with respect to the action of <span></span><math>\n <semantics>\n <mi>σ</mi>\n <annotation>$\\sigma$</annotation>\n </semantics></math> on their fibers. If the fiber class of a Jacobian elliptic fibration on <span></span><math>\n <semantics>\n <mrow>\n <mo>NS</mo>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NS}(X)$</annotation>\n </semantics></math> is fixed by <span></span><math>\n <semantics>\n <mi>σ</mi>\n <annotation>$\\sigma$</annotation>\n </semantics></math>, we determine the possible configurations of its singular fibers and present the equation for its generic fiber. When the Picard number of <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> is at least 12 and <span></span><math>\n <semantics>\n <mi>σ</mi>\n <annotation>$\\sigma$</annotation>\n </semantics></math> acts trivially on <span></span><math>\n <semantics>\n <mrow>\n <mo>NS</mo>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NS}(X)$</annotation>\n </semantics></math>, we apply the Kneser–Nishiyama method to find its Jacobian elliptic fibrations up to <span></span><math>\n <semantics>\n <msub>\n <mi>J</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\mathcal {J}_2$</annotation>\n </semantics></math>-equivalence. We use our method to classify them with respect to any non-symplectic automorphism of order 3 in <span></span><math>\n <semantics>\n <mrow>\n <mo>Aut</mo>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{Aut}(X)$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 5","pages":"1758-1788"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.12018","citationCount":"0","resultStr":"{\"title\":\"Jacobian elliptic fibrations on K3s with a non-symplectic automorphism of order 3\",\"authors\":\"Felipe Zingali Meira\",\"doi\":\"10.1002/mana.12018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> be a K3 surface admitting a non-symplectic automorphism <span></span><math>\\n <semantics>\\n <mi>σ</mi>\\n <annotation>$\\\\sigma$</annotation>\\n </semantics></math> of order 3. Building on work by Garbagnati and Salgado, we classify the Jacobian elliptic fibrations on <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> with respect to the action of <span></span><math>\\n <semantics>\\n <mi>σ</mi>\\n <annotation>$\\\\sigma$</annotation>\\n </semantics></math> on their fibers. If the fiber class of a Jacobian elliptic fibration on <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>NS</mo>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{NS}(X)$</annotation>\\n </semantics></math> is fixed by <span></span><math>\\n <semantics>\\n <mi>σ</mi>\\n <annotation>$\\\\sigma$</annotation>\\n </semantics></math>, we determine the possible configurations of its singular fibers and present the equation for its generic fiber. When the Picard number of <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> is at least 12 and <span></span><math>\\n <semantics>\\n <mi>σ</mi>\\n <annotation>$\\\\sigma$</annotation>\\n </semantics></math> acts trivially on <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>NS</mo>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{NS}(X)$</annotation>\\n </semantics></math>, we apply the Kneser–Nishiyama method to find its Jacobian elliptic fibrations up to <span></span><math>\\n <semantics>\\n <msub>\\n <mi>J</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\mathcal {J}_2$</annotation>\\n </semantics></math>-equivalence. We use our method to classify them with respect to any non-symplectic automorphism of order 3 in <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>Aut</mo>\\n <mo>(</mo>\\n <mi>X</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{Aut}(X)$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 5\",\"pages\":\"1758-1788\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.12018\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.12018\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12018","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Jacobian elliptic fibrations on K3s with a non-symplectic automorphism of order 3
Let be a K3 surface admitting a non-symplectic automorphism of order 3. Building on work by Garbagnati and Salgado, we classify the Jacobian elliptic fibrations on with respect to the action of on their fibers. If the fiber class of a Jacobian elliptic fibration on is fixed by , we determine the possible configurations of its singular fibers and present the equation for its generic fiber. When the Picard number of is at least 12 and acts trivially on , we apply the Kneser–Nishiyama method to find its Jacobian elliptic fibrations up to -equivalence. We use our method to classify them with respect to any non-symplectic automorphism of order 3 in .
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index