微分模与里费尔代数

IF 0.8 3区 数学 Q2 MATHEMATICS
Rodrigo A. H. M. Cabral, Michael Forger, Severino T. Melo
{"title":"微分模与里费尔代数","authors":"Rodrigo A. H. M. Cabral,&nbsp;Michael Forger,&nbsp;Severino T. Melo","doi":"10.1002/mana.12019","DOIUrl":null,"url":null,"abstract":"<p>We develop criteria to guarantee uniqueness of the <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mo>∗</mo>\n </msup>\n <annotation>${\\rm C}^*$</annotation>\n </semantics></math>-norm on a <span></span><math>\n <semantics>\n <mo>∗</mo>\n <annotation>$*$</annotation>\n </semantics></math>-algebra <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$\\mathcal {B}$</annotation>\n </semantics></math>. Nontrivial examples are provided by the noncommutative algebras of <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$\\mathcal {C}$</annotation>\n </semantics></math>-valued functions <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>S</mi>\n <mi>J</mi>\n <mi>C</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {S}_J^\\mathcal {C}(\\mathbb {R}^n)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>B</mi>\n <mi>J</mi>\n <mi>C</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {B}_J^\\mathcal {C}(\\mathbb {R}^n)$</annotation>\n </semantics></math> defined by M.A. Rieffel via a deformation quantization procedure, where <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$\\mathcal {C}$</annotation>\n </semantics></math> is a <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mo>∗</mo>\n </msup>\n <annotation>${\\rm C}^*$</annotation>\n </semantics></math>-algebra and <span></span><math>\n <semantics>\n <mi>J</mi>\n <annotation>$J$</annotation>\n </semantics></math> is a skew-symmetric linear transformation on <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math> with respect to which the usual pointwise product is deformed. In the process, we prove that the Fréchet <span></span><math>\n <semantics>\n <mo>∗</mo>\n <annotation>$*$</annotation>\n </semantics></math>-algebra topology of <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>B</mi>\n <mi>J</mi>\n <mi>C</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {B}_J^\\mathcal {C}(\\mathbb {R}^n)$</annotation>\n </semantics></math> can be generated by a sequence of submultiplicative <span></span><math>\n <semantics>\n <mo>∗</mo>\n <annotation>$*$</annotation>\n </semantics></math>-norms and that, if <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$\\mathcal {C}$</annotation>\n </semantics></math> is unital, this algebra is closed under the <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mi>∞</mi>\n </msup>\n <annotation>${\\rm C}^\\infty$</annotation>\n </semantics></math>-functional calculus of its <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mo>∗</mo>\n </msup>\n <annotation>${\\rm C}^*$</annotation>\n </semantics></math>-completion. We also show that the algebras <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>S</mi>\n <mi>J</mi>\n <mi>C</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {S}_J^\\mathcal {C}(\\mathbb {R}^n)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>B</mi>\n <mi>J</mi>\n <mi>C</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {B}_J^\\mathcal {C}(\\mathbb {R}^n)$</annotation>\n </semantics></math> are spectrally invariant in their respective <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mo>∗</mo>\n </msup>\n <annotation>${\\rm C}^*$</annotation>\n </semantics></math>-completions, when <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$\\mathcal {C}$</annotation>\n </semantics></math> is unital. As a corollary of our results, we obtain simple proofs of certain estimates in <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>B</mi>\n <mi>J</mi>\n <mi>C</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {B}_J^\\mathcal {C}(\\mathbb {R}^n)$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 7","pages":"2177-2203"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential norms and Rieffel algebras\",\"authors\":\"Rodrigo A. H. M. Cabral,&nbsp;Michael Forger,&nbsp;Severino T. Melo\",\"doi\":\"10.1002/mana.12019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop criteria to guarantee uniqueness of the <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mo>∗</mo>\\n </msup>\\n <annotation>${\\\\rm C}^*$</annotation>\\n </semantics></math>-norm on a <span></span><math>\\n <semantics>\\n <mo>∗</mo>\\n <annotation>$*$</annotation>\\n </semantics></math>-algebra <span></span><math>\\n <semantics>\\n <mi>B</mi>\\n <annotation>$\\\\mathcal {B}$</annotation>\\n </semantics></math>. Nontrivial examples are provided by the noncommutative algebras of <span></span><math>\\n <semantics>\\n <mi>C</mi>\\n <annotation>$\\\\mathcal {C}$</annotation>\\n </semantics></math>-valued functions <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>S</mi>\\n <mi>J</mi>\\n <mi>C</mi>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {S}_J^\\\\mathcal {C}(\\\\mathbb {R}^n)$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>B</mi>\\n <mi>J</mi>\\n <mi>C</mi>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {B}_J^\\\\mathcal {C}(\\\\mathbb {R}^n)$</annotation>\\n </semantics></math> defined by M.A. Rieffel via a deformation quantization procedure, where <span></span><math>\\n <semantics>\\n <mi>C</mi>\\n <annotation>$\\\\mathcal {C}$</annotation>\\n </semantics></math> is a <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mo>∗</mo>\\n </msup>\\n <annotation>${\\\\rm C}^*$</annotation>\\n </semantics></math>-algebra and <span></span><math>\\n <semantics>\\n <mi>J</mi>\\n <annotation>$J$</annotation>\\n </semantics></math> is a skew-symmetric linear transformation on <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {R}^n$</annotation>\\n </semantics></math> with respect to which the usual pointwise product is deformed. In the process, we prove that the Fréchet <span></span><math>\\n <semantics>\\n <mo>∗</mo>\\n <annotation>$*$</annotation>\\n </semantics></math>-algebra topology of <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>B</mi>\\n <mi>J</mi>\\n <mi>C</mi>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {B}_J^\\\\mathcal {C}(\\\\mathbb {R}^n)$</annotation>\\n </semantics></math> can be generated by a sequence of submultiplicative <span></span><math>\\n <semantics>\\n <mo>∗</mo>\\n <annotation>$*$</annotation>\\n </semantics></math>-norms and that, if <span></span><math>\\n <semantics>\\n <mi>C</mi>\\n <annotation>$\\\\mathcal {C}$</annotation>\\n </semantics></math> is unital, this algebra is closed under the <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mi>∞</mi>\\n </msup>\\n <annotation>${\\\\rm C}^\\\\infty$</annotation>\\n </semantics></math>-functional calculus of its <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mo>∗</mo>\\n </msup>\\n <annotation>${\\\\rm C}^*$</annotation>\\n </semantics></math>-completion. We also show that the algebras <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>S</mi>\\n <mi>J</mi>\\n <mi>C</mi>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {S}_J^\\\\mathcal {C}(\\\\mathbb {R}^n)$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>B</mi>\\n <mi>J</mi>\\n <mi>C</mi>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {B}_J^\\\\mathcal {C}(\\\\mathbb {R}^n)$</annotation>\\n </semantics></math> are spectrally invariant in their respective <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mo>∗</mo>\\n </msup>\\n <annotation>${\\\\rm C}^*$</annotation>\\n </semantics></math>-completions, when <span></span><math>\\n <semantics>\\n <mi>C</mi>\\n <annotation>$\\\\mathcal {C}$</annotation>\\n </semantics></math> is unital. As a corollary of our results, we obtain simple proofs of certain estimates in <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>B</mi>\\n <mi>J</mi>\\n <mi>C</mi>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathcal {B}_J^\\\\mathcal {C}(\\\\mathbb {R}^n)$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 7\",\"pages\":\"2177-2203\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.12019\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12019","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给出了保证C * $*$ -代数B $\mathcal {B}$上C * ${\rm C}^*$ -范数唯一性的判据。给出了C $\mathcal {C}$ -值函数S J C (R n)的非交换代数的非平凡例子。$\mathcal {S}_J^\mathcal {C}(\mathbb {R}^n)$和b.j.c (R n) $\mathcal {B}_J^\mathcal {C}(\mathbb {R}^n)$由M.A. Rieffel通过变形量化程序定义,其中C $\mathcal {C}$是C * ${\rm C}^*$ -代数,J $J$是R n $\mathbb {R}^n$上的一个偏对称线性变换点形产品变形。在这个过程中,证明了B J C (R n) $\mathcal {B}_J^\mathcal {C}(\mathbb {R}^n)$的fr * $*$ -代数拓扑可以由一个次乘性* $*$ -范数序列,如果C $\mathcal {C}$是单位的,该代数在其C * ${\rm C}^*$补全的C∞${\rm C}^\infty$ -泛函演算下闭合。我们还证明了代数S J C (rn) $\mathcal {S}_J^\mathcal {C}(\mathbb {R}^n)$和B JC (R n) $\mathcal {B}_J^\mathcal {C}(\mathbb {R}^n)$在它们各自的C * ${\rm C}^*$ -补全中是谱不变的;当C $\mathcal {C}$为单位时。作为我们的结果的一个推论,我们得到了B J C (R n) $\mathcal {B}_J^\mathcal {C}(\mathbb {R}^n)$中某些估计的简单证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential norms and Rieffel algebras

We develop criteria to guarantee uniqueness of the C ${\rm C}^*$ -norm on a $*$ -algebra B $\mathcal {B}$ . Nontrivial examples are provided by the noncommutative algebras of C $\mathcal {C}$ -valued functions S J C ( R n ) $\mathcal {S}_J^\mathcal {C}(\mathbb {R}^n)$ and B J C ( R n ) $\mathcal {B}_J^\mathcal {C}(\mathbb {R}^n)$ defined by M.A. Rieffel via a deformation quantization procedure, where C $\mathcal {C}$ is a C ${\rm C}^*$ -algebra and J $J$ is a skew-symmetric linear transformation on R n $\mathbb {R}^n$ with respect to which the usual pointwise product is deformed. In the process, we prove that the Fréchet $*$ -algebra topology of B J C ( R n ) $\mathcal {B}_J^\mathcal {C}(\mathbb {R}^n)$ can be generated by a sequence of submultiplicative $*$ -norms and that, if C $\mathcal {C}$ is unital, this algebra is closed under the C ${\rm C}^\infty$ -functional calculus of its C ${\rm C}^*$ -completion. We also show that the algebras S J C ( R n ) $\mathcal {S}_J^\mathcal {C}(\mathbb {R}^n)$ and B J C ( R n ) $\mathcal {B}_J^\mathcal {C}(\mathbb {R}^n)$ are spectrally invariant in their respective C ${\rm C}^*$ -completions, when C $\mathcal {C}$ is unital. As a corollary of our results, we obtain simple proofs of certain estimates in B J C ( R n ) $\mathcal {B}_J^\mathcal {C}(\mathbb {R}^n)$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信