Jacobian elliptic fibrations on K3s with a non-symplectic automorphism of order 3

IF 0.8 3区 数学 Q2 MATHEMATICS
Felipe Zingali Meira
{"title":"Jacobian elliptic fibrations on K3s with a non-symplectic automorphism of order 3","authors":"Felipe Zingali Meira","doi":"10.1002/mana.12018","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> be a K3 surface admitting a non-symplectic automorphism <span></span><math>\n <semantics>\n <mi>σ</mi>\n <annotation>$\\sigma$</annotation>\n </semantics></math> of order 3. Building on work by Garbagnati and Salgado, we classify the Jacobian elliptic fibrations on <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> with respect to the action of <span></span><math>\n <semantics>\n <mi>σ</mi>\n <annotation>$\\sigma$</annotation>\n </semantics></math> on their fibers. If the fiber class of a Jacobian elliptic fibration on <span></span><math>\n <semantics>\n <mrow>\n <mo>NS</mo>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NS}(X)$</annotation>\n </semantics></math> is fixed by <span></span><math>\n <semantics>\n <mi>σ</mi>\n <annotation>$\\sigma$</annotation>\n </semantics></math>, we determine the possible configurations of its singular fibers and present the equation for its generic fiber. When the Picard number of <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> is at least 12 and <span></span><math>\n <semantics>\n <mi>σ</mi>\n <annotation>$\\sigma$</annotation>\n </semantics></math> acts trivially on <span></span><math>\n <semantics>\n <mrow>\n <mo>NS</mo>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NS}(X)$</annotation>\n </semantics></math>, we apply the Kneser–Nishiyama method to find its Jacobian elliptic fibrations up to <span></span><math>\n <semantics>\n <msub>\n <mi>J</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\mathcal {J}_2$</annotation>\n </semantics></math>-equivalence. We use our method to classify them with respect to any non-symplectic automorphism of order 3 in <span></span><math>\n <semantics>\n <mrow>\n <mo>Aut</mo>\n <mo>(</mo>\n <mi>X</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{Aut}(X)$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 5","pages":"1758-1788"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.12018","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12018","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X $X$ be a K3 surface admitting a non-symplectic automorphism σ $\sigma$ of order 3. Building on work by Garbagnati and Salgado, we classify the Jacobian elliptic fibrations on X $X$ with respect to the action of σ $\sigma$ on their fibers. If the fiber class of a Jacobian elliptic fibration on NS ( X ) $\operatorname{NS}(X)$ is fixed by σ $\sigma$ , we determine the possible configurations of its singular fibers and present the equation for its generic fiber. When the Picard number of X $X$ is at least 12 and σ $\sigma$ acts trivially on NS ( X ) $\operatorname{NS}(X)$ , we apply the Kneser–Nishiyama method to find its Jacobian elliptic fibrations up to J 2 $\mathcal {J}_2$ -equivalence. We use our method to classify them with respect to any non-symplectic automorphism of order 3 in Aut ( X ) $\operatorname{Aut}(X)$ .

Abstract Image

具有3阶非辛自同构的K3s上的雅可比椭圆颤振
设X$ X$是一个具有3阶非辛自同构σ $\sigma$的K3曲面。在Garbagnati和Salgado工作的基础上,我们根据σ $\ σ $对其纤维的作用对X$ X$上的雅可比椭圆纤维进行了分类。如果NS (X)$ \operatorname{NS}(X)$上的雅可比椭圆型纤维的纤维类是由σ $\sigma$固定的,我们确定了它的奇异纤维的可能构型,并给出了它的一般纤维的方程。当X$ X$的皮卡德数至少为12且σ $\sigma$对NS (X)$ \operatorname{NS}(X)$起平凡作用时,我们应用Kneser-Nishiyama方法求出了j2 $\mathcal {J}_2$ -等价的雅可比椭圆型纤支。我们用我们的方法对Aut (X)$ \operatorname{Aut}(X)$中任意3阶的非辛自同构进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信