特征2的K3曲面上因子的2可除性

IF 0.8 3区 数学 Q2 MATHEMATICS
Toshiyuki Katsura, Shigeyuki Kondō, Matthias Schütt
{"title":"特征2的K3曲面上因子的2可除性","authors":"Toshiyuki Katsura,&nbsp;Shigeyuki Kondō,&nbsp;Matthias Schütt","doi":"10.1002/mana.12024","DOIUrl":null,"url":null,"abstract":"<p>We show that K3 surfaces in characteristic 2 can admit sets of <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> disjoint smooth rational curves whose sum is divisible by 2 in the Picard group, for each <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>8</mn>\n <mo>,</mo>\n <mn>12</mn>\n <mo>,</mo>\n <mn>16</mn>\n <mo>,</mo>\n <mn>20</mn>\n </mrow>\n <annotation>$n=8,12,16,20$</annotation>\n </semantics></math>. More precisely, all values occur on supersingular K3 surfaces, with exceptions only at Artin invariants 1 and 10, while on K3 surfaces of finite height, only <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>8</mn>\n </mrow>\n <annotation>$n=8$</annotation>\n </semantics></math> is possible.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 6","pages":"1964-1988"},"PeriodicalIF":0.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.12024","citationCount":"0","resultStr":"{\"title\":\"The 2-divisibility of divisors on K3 surfaces in characteristic 2\",\"authors\":\"Toshiyuki Katsura,&nbsp;Shigeyuki Kondō,&nbsp;Matthias Schütt\",\"doi\":\"10.1002/mana.12024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that K3 surfaces in characteristic 2 can admit sets of <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> disjoint smooth rational curves whose sum is divisible by 2 in the Picard group, for each <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>8</mn>\\n <mo>,</mo>\\n <mn>12</mn>\\n <mo>,</mo>\\n <mn>16</mn>\\n <mo>,</mo>\\n <mn>20</mn>\\n </mrow>\\n <annotation>$n=8,12,16,20$</annotation>\\n </semantics></math>. More precisely, all values occur on supersingular K3 surfaces, with exceptions only at Artin invariants 1 and 10, while on K3 surfaces of finite height, only <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>8</mn>\\n </mrow>\\n <annotation>$n=8$</annotation>\\n </semantics></math> is possible.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 6\",\"pages\":\"1964-1988\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.12024\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.12024\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.12024","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了特征2中的K3曲面可以容纳n$ n$不相交的光滑有理曲线集合,其和在Picard群中可被2整除,对于每个n = 8,12,16,20$ n=8,12,16,20$。更准确地说,所有的值都出现在超奇异的K3曲面上,只有在Artin不变量1和10处例外,而在有限高度的K3曲面上,只有n=8$ n=8$是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The 2-divisibility of divisors on K3 surfaces in characteristic 2

We show that K3 surfaces in characteristic 2 can admit sets of n $n$ disjoint smooth rational curves whose sum is divisible by 2 in the Picard group, for each n = 8 , 12 , 16 , 20 $n=8,12,16,20$ . More precisely, all values occur on supersingular K3 surfaces, with exceptions only at Artin invariants 1 and 10, while on K3 surfaces of finite height, only n = 8 $n=8$ is possible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信