Mathematische Nachrichten最新文献

筛选
英文 中文
Extrapolation to mixed Herz spaces and its applications 混合赫兹空间的外推法及其应用
IF 1 3区 数学
Mathematische Nachrichten Pub Date : 2024-03-03 DOI: 10.1002/mana.202100134
Mingquan Wei
{"title":"Extrapolation to mixed Herz spaces and its applications","authors":"Mingquan Wei","doi":"10.1002/mana.202100134","DOIUrl":"10.1002/mana.202100134","url":null,"abstract":"<p>In this paper, we extend the extrapolation theory to mixed Herz spaces <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mover>\u0000 <mi>K</mi>\u0000 <mo>̇</mo>\u0000 </mover>\u0000 <mover>\u0000 <mi>q</mi>\u0000 <mo>⃗</mo>\u0000 </mover>\u0000 <mrow>\u0000 <mi>α</mi>\u0000 <mo>,</mo>\u0000 <mi>p</mi>\u0000 </mrow>\u0000 </msubsup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$dot{K}^{alpha,p}_{vec{q}}(mathbb {R}^n)$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>K</mi>\u0000 <mover>\u0000 <mi>q</mi>\u0000 <mo>⃗</mo>\u0000 </mover>\u0000 <mrow>\u0000 <mi>α</mi>\u0000 <mo>,</mo>\u0000 <mi>p</mi>\u0000 </mrow>\u0000 </msubsup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$K^{alpha,p}_{vec{q}}(mathbb {R}^n)$</annotation>\u0000 </semantics></math>. To prove the main result, we first study the dual spaces of mixed Herz spaces, and then give the boundedness of the Hardy–Littlewood maximal operator on mixed Herz spaces. By using the extrapolation theorems, we obtain the boundedness of many integral operators on mixed Herz spaces. We also give a new characterization of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mi>bounded</mi>\u0000 <mspace></mspace>\u0000 <mi>mean</mi>\u0000 <mspace></mspace>\u0000 <mi>oscillation</mi>\u0000 <mspace></mspace>\u0000 <mi>space</mi>\u0000 </mrow>\u0000 <mspace></mspace>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>BMO</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annot","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140034771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Totally geodesic Lagrangian submanifolds of the pseudo-nearly Kähler SL ( 2 , R ) × SL ( 2 , R ) $mathrm{SL}(2,mathbb {R})times mathrm{SL}(2,mathbb {R})$ 伪近似 Kähler SL(2,R)×SL(2,R)$mathrm{SL}(2,mathbb {R})times mathrm{SL}(2,mathbb {R})$ 的完全测地拉格朗日子网格
IF 1 3区 数学
Mathematische Nachrichten Pub Date : 2024-03-03 DOI: 10.1002/mana.202300351
Mateo Anarella, J. Van der Veken
{"title":"Totally geodesic Lagrangian submanifolds of the pseudo-nearly Kähler \u0000 \u0000 \u0000 SL\u0000 (\u0000 2\u0000 ,\u0000 R\u0000 )\u0000 ×\u0000 SL\u0000 (\u0000 2\u0000 ,\u0000 R\u0000 )\u0000 \u0000 $mathrm{SL}(2,mathbb {R})times mathrm{SL}(2,mathbb {R})$","authors":"Mateo Anarella,&nbsp;J. Van der Veken","doi":"10.1002/mana.202300351","DOIUrl":"10.1002/mana.202300351","url":null,"abstract":"<p>In this paper, we study Lagrangian submanifolds of the pseudo-nearly Kähler <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>SL</mi>\u0000 <mo>(</mo>\u0000 <mn>2</mn>\u0000 <mo>,</mo>\u0000 <mi>R</mi>\u0000 <mo>)</mo>\u0000 <mo>×</mo>\u0000 <mi>SL</mi>\u0000 <mo>(</mo>\u0000 <mn>2</mn>\u0000 <mo>,</mo>\u0000 <mi>R</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$mathrm{SL}(2,mathbb {R})times mathrm{SL}(2,mathbb {R})$</annotation>\u0000 </semantics></math>. First, we show that they split into four different classes depending on their behavior with respect to a certain almost product structure on the ambient space. Then, we give a complete classification of totally geodesic Lagrangian submanifolds of this space.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140034744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the zero set of the holomorphic sectional curvature 关于全形截面曲率的零集
IF 1 3区 数学
Mathematische Nachrichten Pub Date : 2024-02-28 DOI: 10.1002/mana.202300424
Yongchang Chen, Gordon Heier
{"title":"On the zero set of the holomorphic sectional curvature","authors":"Yongchang Chen,&nbsp;Gordon Heier","doi":"10.1002/mana.202300424","DOIUrl":"10.1002/mana.202300424","url":null,"abstract":"<p>A notable example due to Heier, Lu, Wong, and Zheng shows that there exist compact complex Kähler manifolds with ample canonical line bundle such that the holomorphic sectional curvature is negative semi-definite and vanishes along high-dimensional linear subspaces in every tangent space. The main result of this note is an upper bound for the dimensions of these subspaces. Due to the holomorphic sectional curvature being a real-valued bihomogeneous polynomial of bidegree (2,2) on every tangent space, the proof is based on making a connection with the work of D'Angelo on complex subvarieties of real algebraic varieties and the decomposition of polynomials into differences of squares. Our bound involves an invariant that we call the holomorphic sectional curvature square decomposition length, and our arguments work as long as the holomorphic sectional curvature is semi-definite, be it negative or positive.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140007966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extension and embedding theorems for Campanato spaces on C 0 , γ $C^{0,gamma }$ domains C0,γ$C^{0,gamma }$ 域上坎帕纳托空间的扩展和嵌入定理
IF 1 3区 数学
Mathematische Nachrichten Pub Date : 2024-02-28 DOI: 10.1002/mana.202300092
Damiano Greco, Pier Domenico Lamberti
{"title":"Extension and embedding theorems for Campanato spaces on \u0000 \u0000 \u0000 C\u0000 \u0000 0\u0000 ,\u0000 γ\u0000 \u0000 \u0000 $C^{0,gamma }$\u0000 domains","authors":"Damiano Greco,&nbsp;Pier Domenico Lamberti","doi":"10.1002/mana.202300092","DOIUrl":"10.1002/mana.202300092","url":null,"abstract":"<p>We consider Campanato spaces with exponents <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>λ</mi>\u0000 <mo>,</mo>\u0000 <mi>p</mi>\u0000 </mrow>\u0000 <annotation>$lambda, p$</annotation>\u0000 </semantics></math> on domains of class <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mrow>\u0000 <mn>0</mn>\u0000 <mo>,</mo>\u0000 <mi>γ</mi>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$C^{0,gamma }$</annotation>\u0000 </semantics></math> in the <i>N</i>-dimensional Euclidean space endowed with a natural anisotropic metric depending on <span></span><math>\u0000 <semantics>\u0000 <mi>γ</mi>\u0000 <annotation>$gamma$</annotation>\u0000 </semantics></math>. We discuss several results including the appropriate Campanato's embedding theorem and we prove that functions of those spaces can be extended to the whole of the Euclidean space without deterioration of the exponents <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>λ</mi>\u0000 <mo>,</mo>\u0000 <mi>p</mi>\u0000 </mrow>\u0000 <annotation>$lambda, p$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140007976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy behavior for Sobolev solutions to viscoelastic damped wave models with time-dependent oscillating coefficient 具有随时间变化的振荡系数的粘弹性阻尼波模型的索波列夫解的能量行为
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-02-28 DOI: 10.1002/mana.202200431
Xiaojun Lu
{"title":"Energy behavior for Sobolev solutions to viscoelastic damped wave models with time-dependent oscillating coefficient","authors":"Xiaojun Lu","doi":"10.1002/mana.202200431","DOIUrl":"10.1002/mana.202200431","url":null,"abstract":"<p>In this work, we study the asymptotic behavior of the structurally damped wave equations arising from the viscoelastic mechanics. We are particularly interested in the complicated interaction of the time-dependent oscillating coefficients on the Dirichlet Laplacian operator and the structurally damped terms. On the one hand, by the application of WKB analysis, we explore the asymptotic energy estimates of the wave equations influenced by four types of oscillating mechanisms. On the other hand, in order to prove the optimality of the energy estimates for the critical cases, typical coefficients and initial Cauchy data will be constructed to show the lower bound of the energy growth rate by the application of instability arguments.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140007840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Metivier inequality and ultradifferentiable hypoellipticity 梅蒂维尔不等式和超微分低椭球性
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-02-28 DOI: 10.1002/mana.202300147
Paulo D. Cordaro, Stefan Fürdös
{"title":"The Metivier inequality and ultradifferentiable hypoellipticity","authors":"Paulo D. Cordaro,&nbsp;Stefan Fürdös","doi":"10.1002/mana.202300147","DOIUrl":"10.1002/mana.202300147","url":null,"abstract":"<p>In 1980, Métivier characterized the analytic (and Gevrey) hypoellipticity of <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>$L^2$</annotation>\u0000 </semantics></math>-solvable partial linear differential operators by a priori estimates. In this note, we extend this characterization to ultradifferentiable hypoellipticity with respect to Denjoy–Carleman classes given by suitable weight sequences. We also discuss the case when the solutions can be taken as hyperfunctions and present some applications.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300147","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140007851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A singular growth phenomenon in a Keller–Segel–type parabolic system involving density-suppressed motilities 涉及密度抑制运动的凯勒-西格尔型抛物线系统中的奇异增长现象
IF 1 3区 数学
Mathematische Nachrichten Pub Date : 2024-02-23 DOI: 10.1002/mana.202300361
Yulan Wang, Michael Winkler
{"title":"A singular growth phenomenon in a Keller–Segel–type parabolic system involving density-suppressed motilities","authors":"Yulan Wang,&nbsp;Michael Winkler","doi":"10.1002/mana.202300361","DOIUrl":"10.1002/mana.202300361","url":null,"abstract":"<p>A no-flux initial-boundary value problem for\u0000\u0000 </p><p>Under the assumption that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>α</mi>\u0000 <mo>&gt;</mo>\u0000 <mfrac>\u0000 <mi>n</mi>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>−</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 </mfrac>\u0000 </mrow>\u0000 <annotation>$alpha &amp;gt;frac{n}{n-2}$</annotation>\u0000 </semantics></math>, it is shown that for each <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 <mo>&gt;</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$m&amp;gt;0$</annotation>\u0000 </semantics></math>, there exist <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>T</mi>\u0000 <mo>&gt;</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$T&amp;gt;0$</annotation>\u0000 </semantics></math> and a positive <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>v</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <mo>∈</mo>\u0000 <msup>\u0000 <mi>W</mi>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>Ω</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$v_0in W^{1,infty }(Omega)$</annotation>\u0000 </semantics></math> with the property that whenever <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>u</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <mo>∈</mo>\u0000 <msup>\u0000 <mi>W</mi>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>Ω</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$u_0in W^{1,infty }(Omega)$</annotation>\u0000 </semantics></math> is nonnegative with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 ","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300361","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139956188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
I-surfaces from surfaces with one exceptional unimodal point 从有一个特殊单模态点的曲面出发的 I 型曲面
IF 1 3区 数学
Mathematische Nachrichten Pub Date : 2024-02-23 DOI: 10.1002/mana.202300218
Sönke Rollenske, Diana Torres
{"title":"I-surfaces from surfaces with one exceptional unimodal point","authors":"Sönke Rollenske,&nbsp;Diana Torres","doi":"10.1002/mana.202300218","DOIUrl":"10.1002/mana.202300218","url":null,"abstract":"<p>We complement recent work of Gallardo, Pearlstein, Schaffler, and Zhang, showing that the stable surfaces with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>K</mi>\u0000 <mi>X</mi>\u0000 <mn>2</mn>\u0000 </msubsup>\u0000 <mo>=</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$K_X^2 =1$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>χ</mi>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>O</mi>\u0000 <mi>X</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 <mo>=</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$chi (mathcal {O}_X) = 3$</annotation>\u0000 </semantics></math> they construct are indeed the only ones arising from imposing an exceptional unimodal double point.</p><p>In addition, we explicitly describe the birational type of the surfaces constructed from singularities of type <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>E</mi>\u0000 <mn>12</mn>\u0000 </msub>\u0000 <annotation>$E_{12}$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>E</mi>\u0000 <mn>13</mn>\u0000 </msub>\u0000 <annotation>$E_{13}$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>E</mi>\u0000 <mn>14</mn>\u0000 </msub>\u0000 <annotation>$E_{14}$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300218","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139955953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Density of smooth functions in Musielak–Orlicz–Sobolev spaces W k , Φ ( Ω ) $W^{k,Phi }(Omega)$ Musielak-Orlicz-Sobolev 空间 Wk,Φ(Ω)$W^{k,Phi }(Omega)$ 中光滑函数的密度
IF 1 3区 数学
Mathematische Nachrichten Pub Date : 2024-02-23 DOI: 10.1002/mana.202300232
Anna Kamińska, Mariusz Żyluk
{"title":"Density of smooth functions in Musielak–Orlicz–Sobolev spaces \u0000 \u0000 \u0000 \u0000 W\u0000 \u0000 k\u0000 ,\u0000 Φ\u0000 \u0000 \u0000 \u0000 (\u0000 Ω\u0000 )\u0000 \u0000 \u0000 $W^{k,Phi }(Omega)$","authors":"Anna Kamińska,&nbsp;Mariusz Żyluk","doi":"10.1002/mana.202300232","DOIUrl":"10.1002/mana.202300232","url":null,"abstract":"<p>We consider here Musielak–Orlicz–Sobolev (MOS) spaces <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>W</mi>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>,</mo>\u0000 <mi>Φ</mi>\u0000 </mrow>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>Ω</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$W^{k,Phi }(Omega)$</annotation>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mi>Ω</mi>\u0000 <annotation>$Omega$</annotation>\u0000 </semantics></math> is an open subset of <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>d</mi>\u0000 </msup>\u0000 <annotation>$mathbb {R}^d$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>∈</mo>\u0000 <mi>N</mi>\u0000 <mo>,</mo>\u0000 </mrow>\u0000 <annotation>$kin mathbb {N,}$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mi>Φ</mi>\u0000 <annotation>$Phi$</annotation>\u0000 </semantics></math> is a Musielak–Orlicz function. The main outcomes consist of the results on density of the space of compactly supported smooth functions <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>C</mi>\u0000 <mi>C</mi>\u0000 <mi>∞</mi>\u0000 </msubsup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>Ω</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$C_C^infty (Omega)$</annotation>\u0000 </semantics></math> in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>W</mi>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>,</mo>\u0000 <mi>Φ</mi>\u0000 </mrow>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>Ω</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$W^{k,Phi }(Omega)$</annotation>\u0000 </semantics></math>. One section is devoted to compare the various conditions on <span></span><math>\u0000 <semantics>\u0000 <mi>Φ</mi>\u0000 <annotation>$Phi$</annotation>\u0000 </semantics></math> appearing in the literature in the context of maximal operator and density theorems in MOS spaces. The assum","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139955952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Mullins–Sekerka problem via the method of potentials 通过电位法解决穆林斯-塞克尔卡问题
IF 1 3区 数学
Mathematische Nachrichten Pub Date : 2024-02-23 DOI: 10.1002/mana.202300350
Joachim Escher, Anca-Voichita Matioc, Bogdan-Vasile Matioc
{"title":"The Mullins–Sekerka problem via the method of potentials","authors":"Joachim Escher,&nbsp;Anca-Voichita Matioc,&nbsp;Bogdan-Vasile Matioc","doi":"10.1002/mana.202300350","DOIUrl":"10.1002/mana.202300350","url":null,"abstract":"<p>It is shown that the two-dimensional Mullins–Sekerka problem is well-posed in all subcritical Sobolev spaces <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mi>r</mi>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>R</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$H^r({mathbb {R}})$</annotation>\u0000 </semantics></math> with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>r</mi>\u0000 <mo>∈</mo>\u0000 <mo>(</mo>\u0000 <mn>3</mn>\u0000 <mo>/</mo>\u0000 <mn>2</mn>\u0000 <mo>,</mo>\u0000 <mn>2</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$rin (3/2,2)$</annotation>\u0000 </semantics></math>. This is the first result, where this issue is established in an unbounded geometry. The novelty of our approach is the use of the potential theory to formulate the model as an evolution problem with nonlinearities expressed by singular integral operators.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300350","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139956139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信