{"title":"Local and global solutions on arcs for the Ericksen–Leslie problem in \u0000 \u0000 \u0000 R\u0000 N\u0000 \u0000 $mathbb {R}^N$","authors":"Daniele Barbera, Vladimir Georgiev","doi":"10.1002/mana.202300253","DOIUrl":"10.1002/mana.202300253","url":null,"abstract":"<p>The work deals with the Ericksen–Leslie system for nematic liquid crystals on the space <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>N</mi>\u0000 </msup>\u0000 <annotation>$mathbb {R}^N$</annotation>\u0000 </semantics></math> with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>N</mi>\u0000 <mo>≥</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$Nge 3$</annotation>\u0000 </semantics></math>. In our work, we suppose the initial condition <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>v</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <annotation>$v_0$</annotation>\u0000 </semantics></math> stays on an arc connecting two fixed orthogonal vectors on the unit sphere. Thanks to this geometric assumption, we prove through energy a priori estimates the local existence and the global existence for small initial data of a solution\u0000\u0000 </p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 10","pages":"3584-3624"},"PeriodicalIF":0.8,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}