{"title":"简并座上关于aCM和Ulrich轴的一个猜想","authors":"Vladimiro Benedetti, Fabio Tanturri","doi":"10.1002/mana.202400324","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we address a conjecture by Kleppe and Miró-Roig stating that suitable twists by line bundles (on the smooth locus) of the exterior powers of the normal sheaf of a standard determinantal locus are arithmetically Cohen–Macaulay, and even Ulrich when the locus is linear determinantal. We do so by providing a very simple locally free resolution of such sheaves obtained through the so-called Weyman's Geometric Method.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 4","pages":"1148-1166"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400324","citationCount":"0","resultStr":"{\"title\":\"On a conjecture on aCM and Ulrich sheaves on degeneracy loci\",\"authors\":\"Vladimiro Benedetti, Fabio Tanturri\",\"doi\":\"10.1002/mana.202400324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we address a conjecture by Kleppe and Miró-Roig stating that suitable twists by line bundles (on the smooth locus) of the exterior powers of the normal sheaf of a standard determinantal locus are arithmetically Cohen–Macaulay, and even Ulrich when the locus is linear determinantal. We do so by providing a very simple locally free resolution of such sheaves obtained through the so-called Weyman's Geometric Method.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 4\",\"pages\":\"1148-1166\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400324\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400324\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400324","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On a conjecture on aCM and Ulrich sheaves on degeneracy loci
In this paper, we address a conjecture by Kleppe and Miró-Roig stating that suitable twists by line bundles (on the smooth locus) of the exterior powers of the normal sheaf of a standard determinantal locus are arithmetically Cohen–Macaulay, and even Ulrich when the locus is linear determinantal. We do so by providing a very simple locally free resolution of such sheaves obtained through the so-called Weyman's Geometric Method.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index