复流形上的无穷小等变束

IF 0.8 3区 数学 Q2 MATHEMATICS
Emile Bouaziz
{"title":"复流形上的无穷小等变束","authors":"Emile Bouaziz","doi":"10.1002/mana.202400284","DOIUrl":null,"url":null,"abstract":"<p>We study holomorphic vector bundles equipped with a compatible action of vector field by <i>Lie derivatives</i>. We will show that the dependence of the Lie derivative on a vector field is <i>almost</i> <span></span><math>\n <semantics>\n <mi>O</mi>\n <annotation>$\\mathcal {O}$</annotation>\n </semantics></math>-linear. More precisely, after an algebraic reformulation, we show that any continuous <span></span><math>\n <semantics>\n <mi>C</mi>\n <annotation>$\\mathbf {C}$</annotation>\n </semantics></math>-linear Lie algebra splitting of the symbol map from the Atiyah algebra of a vector bundle on a complex manifold is given by a differential operator, which is further of order at most the rank of the bundle plus one. The proof is quite elementary. When the differential operator we obtain has order 0 we have simply a vector bundle with flat connection, so in a sense, our theorem says that we are always a uniformly bounded order away from this simplest case.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 3","pages":"1076-1081"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitesimally equivariant bundles on complex manifolds\",\"authors\":\"Emile Bouaziz\",\"doi\":\"10.1002/mana.202400284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study holomorphic vector bundles equipped with a compatible action of vector field by <i>Lie derivatives</i>. We will show that the dependence of the Lie derivative on a vector field is <i>almost</i> <span></span><math>\\n <semantics>\\n <mi>O</mi>\\n <annotation>$\\\\mathcal {O}$</annotation>\\n </semantics></math>-linear. More precisely, after an algebraic reformulation, we show that any continuous <span></span><math>\\n <semantics>\\n <mi>C</mi>\\n <annotation>$\\\\mathbf {C}$</annotation>\\n </semantics></math>-linear Lie algebra splitting of the symbol map from the Atiyah algebra of a vector bundle on a complex manifold is given by a differential operator, which is further of order at most the rank of the bundle plus one. The proof is quite elementary. When the differential operator we obtain has order 0 we have simply a vector bundle with flat connection, so in a sense, our theorem says that we are always a uniformly bounded order away from this simplest case.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 3\",\"pages\":\"1076-1081\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400284\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400284","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用李导数研究了具有相容向量场作用的全纯向量束。我们将证明李导数对向量场的依赖几乎是O $\数学{O}$ -线性的。更精确地说,经过代数的重新表述,我们证明了复流形上向量束的Atiyah代数对符号映射的任何连续C $\mathbf {C}$ -线性李代数的分裂是由一个微分算子给出的,该微分算子的阶数最多为该束的秩加1。这个证明很简单。当我们得到阶为0的微分算子时我们就得到了一个平面连接的向量束,所以从某种意义上说,我们的定理表明我们总是离这个最简单的情况有一个一致有界的阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinitesimally equivariant bundles on complex manifolds

We study holomorphic vector bundles equipped with a compatible action of vector field by Lie derivatives. We will show that the dependence of the Lie derivative on a vector field is almost O $\mathcal {O}$ -linear. More precisely, after an algebraic reformulation, we show that any continuous C $\mathbf {C}$ -linear Lie algebra splitting of the symbol map from the Atiyah algebra of a vector bundle on a complex manifold is given by a differential operator, which is further of order at most the rank of the bundle plus one. The proof is quite elementary. When the differential operator we obtain has order 0 we have simply a vector bundle with flat connection, so in a sense, our theorem says that we are always a uniformly bounded order away from this simplest case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信