{"title":"On the stability of constant higher order mean curvature hypersurfaces in a Riemannian manifold","authors":"Maria Fernanda Elbert, Barbara Nelli","doi":"10.1002/mana.202400159","DOIUrl":"10.1002/mana.202400159","url":null,"abstract":"<p>We propose a notion of stability for constant <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math>-mean curvature hypersurfaces in a general Riemannian manifold and we give some applications. When the ambient manifold is a Space Form, our notion coincides with the known one, given by means of the variational problem.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 11","pages":"4031-4043"},"PeriodicalIF":0.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Entropy solutions to the fully nonlocal diffusion equations","authors":"Ying Li, Chao Zhang","doi":"10.1002/mana.202400130","DOIUrl":"10.1002/mana.202400130","url":null,"abstract":"<p>We consider the fully nonlocal diffusion equations with nonnegative <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <annotation>$L^1$</annotation>\u0000 </semantics></math>-data. Based on the approximation and energy methods, we prove the existence and uniqueness of nonnegative entropy solutions for such problems. In particular, our results are valid for the time-space fractional Laplacian equations.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 11","pages":"4003-4030"},"PeriodicalIF":0.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A criterion for the holomorphy of the curvature of smooth planar webs and applications to dual webs of homogeneous foliations on \u0000 \u0000 \u0000 P\u0000 C\u0000 2\u0000 \u0000 $mathbb {P}^{2}_{mathbb {C}}$","authors":"Samir Bedrouni, David Marín","doi":"10.1002/mana.202400150","DOIUrl":"10.1002/mana.202400150","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>≥</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$dge 3$</annotation>\u0000 </semantics></math> be an integer. For a holomorphic <span></span><math>\u0000 <semantics>\u0000 <mi>d</mi>\u0000 <annotation>$d$</annotation>\u0000 </semantics></math>-web <span></span><math>\u0000 <semantics>\u0000 <mi>W</mi>\u0000 <annotation>$mathcal {W}$</annotation>\u0000 </semantics></math> on a complex surface <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math>, smooth along an irreducible component <span></span><math>\u0000 <semantics>\u0000 <mi>D</mi>\u0000 <annotation>$D$</annotation>\u0000 </semantics></math> of its discriminant <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Δ</mi>\u0000 <mo>(</mo>\u0000 <mi>W</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$Delta (mathcal {W})$</annotation>\u0000 </semantics></math>, we establish an effective criterion for the holomorphy of the curvature of <span></span><math>\u0000 <semantics>\u0000 <mi>W</mi>\u0000 <annotation>$mathcal {W}$</annotation>\u0000 </semantics></math> along <span></span><math>\u0000 <semantics>\u0000 <mi>D</mi>\u0000 <annotation>$D$</annotation>\u0000 </semantics></math>, generalizing results on decomposable webs due to Marín, Pereira, and Pirio. As an application, we deduce a complete characterization for the holomorphy of the curvature of the Legendre transform (dual web) <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Leg</mi>\u0000 <mi>H</mi>\u0000 </mrow>\u0000 <annotation>$mathrm{Leg}mathcal {H}$</annotation>\u0000 </semantics></math> of a homogeneous foliation <span></span><math>\u0000 <semantics>\u0000 <mi>H</mi>\u0000 <annotation>$mathcal {H}$</annotation>\u0000 </semantics></math> of degree <span></span><math>\u0000 <semantics>\u0000 <mi>d</mi>\u0000 <annotation>$d$</annotation>\u0000 </semantics></math> on <span></span><math>\u0000 <semantics>\u0000 <msubsup>\u0000 <mi>P</mi>\u0000 <mi>C</mi>\u0000 <mn>2</mn>\u0000 </msubsup>\u0000 <annotation>$mathbb {P}^{2}_{mathbb {C}}$</annotation>\u0000 </semantics></math>, generalizing some of our previous results. This then allows us to study the flatness of the <span></span><math>\u0000 <semantics>\u0000 <mi>d</mi>\u0000 <annotation>$d$</annotation>\u0000 </semantics></math>-web <span></span><math>\u0000 ","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 11","pages":"3964-3981"},"PeriodicalIF":0.8,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}