平面上具有拉盖尔势的Schrödinger和波动方程的Strichartz估计

IF 0.8 3区 数学 Q2 MATHEMATICS
Haoran Wang
{"title":"平面上具有拉盖尔势的Schrödinger和波动方程的Strichartz估计","authors":"Haoran Wang","doi":"10.1002/mana.202400168","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we obtain a set of Strichartz inequalities for solutions to the Schrödinger and wave equations with a Laguerre potential on the plane. To obtain the desired inequalities, we intend to prove the dispersive estimates for the involved Schrödinger and wave propagators and then a standard <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <msup>\n <mi>T</mi>\n <mo>*</mo>\n </msup>\n </mrow>\n <annotation>$TT^\\ast$</annotation>\n </semantics></math> argument will enable us to arrive at these inequalities. The proof of the dispersive estimate for the Schödinger propagator relies on a crucial uniform boundedness of a series involving the Bessel functions of the first kind, while the dispersive estimate for the wave equation follows from a sequence of standard steps, such as the Gaussian boundedness of the heat kernel, Bernstein-type inequalities, and Müller–Seeger's subordination formula. We have to verify these classical results in the present setting, which is possible since the spectral properties of the involved Schrödinger operator can be explicitly calculated.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 4","pages":"1304-1327"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strichartz estimates for the Schrödinger and wave equations with a Laguerre potential on the plane\",\"authors\":\"Haoran Wang\",\"doi\":\"10.1002/mana.202400168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we obtain a set of Strichartz inequalities for solutions to the Schrödinger and wave equations with a Laguerre potential on the plane. To obtain the desired inequalities, we intend to prove the dispersive estimates for the involved Schrödinger and wave propagators and then a standard <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n <msup>\\n <mi>T</mi>\\n <mo>*</mo>\\n </msup>\\n </mrow>\\n <annotation>$TT^\\\\ast$</annotation>\\n </semantics></math> argument will enable us to arrive at these inequalities. The proof of the dispersive estimate for the Schödinger propagator relies on a crucial uniform boundedness of a series involving the Bessel functions of the first kind, while the dispersive estimate for the wave equation follows from a sequence of standard steps, such as the Gaussian boundedness of the heat kernel, Bernstein-type inequalities, and Müller–Seeger's subordination formula. We have to verify these classical results in the present setting, which is possible since the spectral properties of the involved Schrödinger operator can be explicitly calculated.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 4\",\"pages\":\"1304-1327\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400168\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400168","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文得到了平面上具有拉盖尔势的Schrödinger和波动方程解的一组Strichartz不等式。为了得到期望的不等式,我们打算证明所涉及的Schrödinger和波传播子的色散估计,然后一个标准的TT * $TT^\ast$参数将使我们能够得到这些不等式。Schödinger传播子的色散估计的证明依赖于涉及第一类贝塞尔函数的一系列的关键一致有界性,而波动方程的色散估计遵循一系列标准步骤,例如热核的高斯有界性,伯恩斯坦型不等式和 ller - seeger从属公式。我们必须在目前的情况下验证这些经典结果,这是可能的,因为所涉及的Schrödinger算符的谱性质可以显式计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strichartz estimates for the Schrödinger and wave equations with a Laguerre potential on the plane

In this paper, we obtain a set of Strichartz inequalities for solutions to the Schrödinger and wave equations with a Laguerre potential on the plane. To obtain the desired inequalities, we intend to prove the dispersive estimates for the involved Schrödinger and wave propagators and then a standard T T * $TT^\ast$ argument will enable us to arrive at these inequalities. The proof of the dispersive estimate for the Schödinger propagator relies on a crucial uniform boundedness of a series involving the Bessel functions of the first kind, while the dispersive estimate for the wave equation follows from a sequence of standard steps, such as the Gaussian boundedness of the heat kernel, Bernstein-type inequalities, and Müller–Seeger's subordination formula. We have to verify these classical results in the present setting, which is possible since the spectral properties of the involved Schrödinger operator can be explicitly calculated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信