两点prim - brill - noether轨迹和耦合prim - petri定理

IF 0.8 3区 数学 Q2 MATHEMATICS
Minyoung Jeon
{"title":"两点prim - brill - noether轨迹和耦合prim - petri定理","authors":"Minyoung Jeon","doi":"10.1002/mana.202300581","DOIUrl":null,"url":null,"abstract":"<p>We establish two-pointed Prym–Brill–Noether loci with special vanishing at two points, and determine their K-theory classes when the dimensions are as expected. The classes are derived by the applications of a formula for the K-theory of certain vexillary degeneracy loci in type D. In particular, we show a two-pointed version of the Prym–Petri theorem on the expected dimension in the general case, with a coupled Prym–Petri map. Our approach is inspired by the work on pointed cases by Tarasca, and we generalize unpointed cases by De Concini-Pragacz and Welters.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 4","pages":"1201-1219"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-pointed Prym–Brill–Noether loci and coupled Prym–Petri theorem\",\"authors\":\"Minyoung Jeon\",\"doi\":\"10.1002/mana.202300581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish two-pointed Prym–Brill–Noether loci with special vanishing at two points, and determine their K-theory classes when the dimensions are as expected. The classes are derived by the applications of a formula for the K-theory of certain vexillary degeneracy loci in type D. In particular, we show a two-pointed version of the Prym–Petri theorem on the expected dimension in the general case, with a coupled Prym–Petri map. Our approach is inspired by the work on pointed cases by Tarasca, and we generalize unpointed cases by De Concini-Pragacz and Welters.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 4\",\"pages\":\"1201-1219\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300581\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300581","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了两点特殊消失的两点Prym-Brill-Noether轨迹,并在维数达到预期时确定了它们的k理论类。这些类是通过应用d型中某些涡状退化位点的k理论公式推导出来的。特别地,我们给出了在一般情况下期望维数的两个点版本的prim - petri定理,并给出了一个耦合的prim - petri映射。我们的方法受到了Tarasca关于点案例的工作的启发,我们推广了De Concini-Pragacz和Welters的非点案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-pointed Prym–Brill–Noether loci and coupled Prym–Petri theorem

We establish two-pointed Prym–Brill–Noether loci with special vanishing at two points, and determine their K-theory classes when the dimensions are as expected. The classes are derived by the applications of a formula for the K-theory of certain vexillary degeneracy loci in type D. In particular, we show a two-pointed version of the Prym–Petri theorem on the expected dimension in the general case, with a coupled Prym–Petri map. Our approach is inspired by the work on pointed cases by Tarasca, and we generalize unpointed cases by De Concini-Pragacz and Welters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信