M $M$ -Ideals in real operator algebras

IF 0.8 3区 数学 Q2 MATHEMATICS
David P. Blecher, Matthew Neal, Antonio M. Peralta, Shanshan Su
{"title":"M\n $M$\n -Ideals in real operator algebras","authors":"David P. Blecher,&nbsp;Matthew Neal,&nbsp;Antonio M. Peralta,&nbsp;Shanshan Su","doi":"10.1002/mana.202400227","DOIUrl":null,"url":null,"abstract":"<p>In a recent paper, we showed that a subspace of a real <span></span><math>\n <semantics>\n <msup>\n <mi>JBW</mi>\n <mo>∗</mo>\n </msup>\n <annotation>${\\rm JBW}^*$</annotation>\n </semantics></math>-triple is an <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math>-summand if and only if it is a <span></span><math>\n <semantics>\n <msup>\n <mi>weak</mi>\n <mo>∗</mo>\n </msup>\n <annotation>${\\rm weak}^*$</annotation>\n </semantics></math>-closed triple ideal. As a consequence, <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math>-ideals of real <span></span><math>\n <semantics>\n <msup>\n <mi>JB</mi>\n <mo>∗</mo>\n </msup>\n <annotation>${\\rm JB}^*$</annotation>\n </semantics></math>-triples, including real <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mo>∗</mo>\n </msup>\n <annotation>${\\rm C}^*$</annotation>\n </semantics></math>-algebras, real <span></span><math>\n <semantics>\n <msup>\n <mi>JB</mi>\n <mo>∗</mo>\n </msup>\n <annotation>${\\rm JB}^*$</annotation>\n </semantics></math>-algebras and real TROs, correspond to norm-closed triple ideals. In this paper, we extend this result by identifying the <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math>-ideals in (possibly non-self-adjoint) real operator algebras and Jordan operator algebras. The argument for this is necessarily different. We also give simple characterizations of one-sided <span></span><math>\n <semantics>\n <mi>M</mi>\n <annotation>$M$</annotation>\n </semantics></math>-ideals in real operator algebras, and give some applications to that theory.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 4","pages":"1328-1341"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400227","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In a recent paper, we showed that a subspace of a real JBW ${\rm JBW}^*$ -triple is an M $M$ -summand if and only if it is a weak ${\rm weak}^*$ -closed triple ideal. As a consequence, M $M$ -ideals of real JB ${\rm JB}^*$ -triples, including real C ${\rm C}^*$ -algebras, real JB ${\rm JB}^*$ -algebras and real TROs, correspond to norm-closed triple ideals. In this paper, we extend this result by identifying the M $M$ -ideals in (possibly non-self-adjoint) real operator algebras and Jordan operator algebras. The argument for this is necessarily different. We also give simple characterizations of one-sided M $M$ -ideals in real operator algebras, and give some applications to that theory.

M$ M$ -实算子代数中的理想
在最近的一篇论文中,我们证明了实JBW *$ {\rm JBW}^*$ -三元组的子空间是一个M$ M$ -和,当且仅当它是一个弱*$ {\rm弱}^*$ -闭三元理想。因此,实JB∗${\rm JB}^*$ -三元组的M$ M$ -理想,包括实C∗${\rm C}^*$ -代数,实JB *$ {\rm JB}^*$ -代数和实tro对应于范闭三重理想。在本文中,我们通过辨识(可能是非自伴随的)实算子代数和Jordan算子代数中的M$ M$ -理想,扩展了这一结果。对此的论证必然不同。给出了实算子代数中单侧M$ M$理想的简单刻画,并给出了该理论的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信