下载PDF
{"title":"与余维为1相交的线性子空间相关联的霍奇轨迹","authors":"Remke Kloosterman","doi":"10.1002/mana.202400066","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>⊂</mo>\n <msup>\n <mi>P</mi>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$X\\subset \\mathbf {P}^{2k+1}$</annotation>\n </semantics></math> be a smooth hypersurface containing two <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-dimensional linear spaces <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$\\Pi _1,\\Pi _2$</annotation>\n </semantics></math>, such that <span></span><math>\n <semantics>\n <mrow>\n <mo>dim</mo>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>∩</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n <mo>=</mo>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\dim \\Pi _1\\cap \\Pi _2=k-1$</annotation>\n </semantics></math>. In this paper, we study the question whether the Hodge loci <span></span><math>\n <semantics>\n <mrow>\n <mo>NL</mo>\n <mo>(</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>+</mo>\n <mi>λ</mi>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NL}([\\Pi _1]+\\lambda [\\Pi _2])$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mo>NL</mo>\n <mo>(</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>,</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NL}([\\Pi _1],[\\Pi _2])$</annotation>\n </semantics></math> coincide. This turns out to be the case in a neighborhood of <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> is very general on <span></span><math>\n <semantics>\n <mrow>\n <mo>NL</mo>\n <mo>(</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>,</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NL}([\\Pi _1],[\\Pi _2])$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>></mo>\n <mn>1</mn>\n </mrow>\n <annotation>$k>1$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>≠</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\lambda \\ne 0,1$</annotation>\n </semantics></math>. However, there exists a hypersurface <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> for which <span></span><math>\n <semantics>\n <mrow>\n <mo>NL</mo>\n <mo>(</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>,</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NL}([\\Pi _1],[\\Pi _2])$</annotation>\n </semantics></math> is smooth at <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>, but <span></span><math>\n <semantics>\n <mrow>\n <mo>NL</mo>\n <mo>(</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>+</mo>\n <mi>λ</mi>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NL}([\\Pi _1]+\\lambda [\\Pi _2])$</annotation>\n </semantics></math> is singular for all <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>≠</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\lambda \\ne 0,1$</annotation>\n </semantics></math>. We expect that this is due to an embedded component of <span></span><math>\n <semantics>\n <mrow>\n <mo>NL</mo>\n <mo>(</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>+</mo>\n <mi>λ</mi>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NL}([\\Pi _1]+\\lambda [\\Pi _2])$</annotation>\n </semantics></math>. The case <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$k=1$</annotation>\n </semantics></math> was treated before by Dan, in that case <span></span><math>\n <semantics>\n <mrow>\n <mo>NL</mo>\n <mo>(</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>+</mo>\n <mi>λ</mi>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NL}([\\Pi _1]+\\lambda [\\Pi _2])$</annotation>\n </semantics></math> is nonreduced.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 4","pages":"1220-1229"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400066","citationCount":"0","resultStr":"{\"title\":\"Hodge loci associated with linear subspaces intersecting in codimension one\",\"authors\":\"Remke Kloosterman\",\"doi\":\"10.1002/mana.202400066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>X</mi>\\n <mo>⊂</mo>\\n <msup>\\n <mi>P</mi>\\n <mrow>\\n <mn>2</mn>\\n <mi>k</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$X\\\\subset \\\\mathbf {P}^{2k+1}$</annotation>\\n </semantics></math> be a smooth hypersurface containing two <span></span><math>\\n <semantics>\\n <mi>k</mi>\\n <annotation>$k$</annotation>\\n </semantics></math>-dimensional linear spaces <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Π</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>Π</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation>$\\\\Pi _1,\\\\Pi _2$</annotation>\\n </semantics></math>, such that <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>dim</mo>\\n <msub>\\n <mi>Π</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>∩</mo>\\n <msub>\\n <mi>Π</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>=</mo>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\dim \\\\Pi _1\\\\cap \\\\Pi _2=k-1$</annotation>\\n </semantics></math>. In this paper, we study the question whether the Hodge loci <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>NL</mo>\\n <mo>(</mo>\\n <mrow>\\n <mo>[</mo>\\n <msub>\\n <mi>Π</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n <mo>+</mo>\\n <mi>λ</mi>\\n <mrow>\\n <mo>[</mo>\\n <msub>\\n <mi>Π</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{NL}([\\\\Pi _1]+\\\\lambda [\\\\Pi _2])$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>NL</mo>\\n <mo>(</mo>\\n <mrow>\\n <mo>[</mo>\\n <msub>\\n <mi>Π</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n <mo>,</mo>\\n <mrow>\\n <mo>[</mo>\\n <msub>\\n <mi>Π</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{NL}([\\\\Pi _1],[\\\\Pi _2])$</annotation>\\n </semantics></math> coincide. This turns out to be the case in a neighborhood of <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> if <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> is very general on <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>NL</mo>\\n <mo>(</mo>\\n <mrow>\\n <mo>[</mo>\\n <msub>\\n <mi>Π</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n <mo>,</mo>\\n <mrow>\\n <mo>[</mo>\\n <msub>\\n <mi>Π</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{NL}([\\\\Pi _1],[\\\\Pi _2])$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>></mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$k>1$</annotation>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n <mo>≠</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\lambda \\\\ne 0,1$</annotation>\\n </semantics></math>. However, there exists a hypersurface <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math> for which <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>NL</mo>\\n <mo>(</mo>\\n <mrow>\\n <mo>[</mo>\\n <msub>\\n <mi>Π</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n <mo>,</mo>\\n <mrow>\\n <mo>[</mo>\\n <msub>\\n <mi>Π</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{NL}([\\\\Pi _1],[\\\\Pi _2])$</annotation>\\n </semantics></math> is smooth at <span></span><math>\\n <semantics>\\n <mi>X</mi>\\n <annotation>$X$</annotation>\\n </semantics></math>, but <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>NL</mo>\\n <mo>(</mo>\\n <mrow>\\n <mo>[</mo>\\n <msub>\\n <mi>Π</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n <mo>+</mo>\\n <mi>λ</mi>\\n <mrow>\\n <mo>[</mo>\\n <msub>\\n <mi>Π</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{NL}([\\\\Pi _1]+\\\\lambda [\\\\Pi _2])$</annotation>\\n </semantics></math> is singular for all <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n <mo>≠</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\lambda \\\\ne 0,1$</annotation>\\n </semantics></math>. We expect that this is due to an embedded component of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>NL</mo>\\n <mo>(</mo>\\n <mrow>\\n <mo>[</mo>\\n <msub>\\n <mi>Π</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n <mo>+</mo>\\n <mi>λ</mi>\\n <mrow>\\n <mo>[</mo>\\n <msub>\\n <mi>Π</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{NL}([\\\\Pi _1]+\\\\lambda [\\\\Pi _2])$</annotation>\\n </semantics></math>. The case <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$k=1$</annotation>\\n </semantics></math> was treated before by Dan, in that case <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>NL</mo>\\n <mo>(</mo>\\n <mrow>\\n <mo>[</mo>\\n <msub>\\n <mi>Π</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n <mo>+</mo>\\n <mi>λ</mi>\\n <mrow>\\n <mo>[</mo>\\n <msub>\\n <mi>Π</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>]</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\operatorname{NL}([\\\\Pi _1]+\\\\lambda [\\\\Pi _2])$</annotation>\\n </semantics></math> is nonreduced.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 4\",\"pages\":\"1220-1229\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400066\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400066\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400066","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用