Mathematische Nachrichten最新文献

筛选
英文 中文
On some properties of generalized squeezing functions and Fridman invariants 关于广义挤压函数和弗里德曼不变式的某些性质
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-04-08 DOI: 10.1002/mana.202300268
Shichao Yang, Shuo Zhang
{"title":"On some properties of generalized squeezing functions and Fridman invariants","authors":"Shichao Yang,&nbsp;Shuo Zhang","doi":"10.1002/mana.202300268","DOIUrl":"10.1002/mana.202300268","url":null,"abstract":"<p>The purpose of this paper is twofold. The first aim is to study the comparison of generalized squeezing functions and Fridaman invariants of some special domains. Then, the second aim is to give estimates for these two invariants and discuss their boundary behavior near inessential boundary points.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140594298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On noncompact warped product Ricci solitons 关于非紧凑翘积利玛窦孤子
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-04-05 DOI: 10.1002/mana.202300312
V. Borges
{"title":"On noncompact warped product Ricci solitons","authors":"V. Borges","doi":"10.1002/mana.202300312","DOIUrl":"10.1002/mana.202300312","url":null,"abstract":"<p>The goal of this paper is to investigate complete noncompact warped product gradient Ricci solitons. Nonexistence results, estimates for the warping function and for its gradient are proven. When the soliton is steady or expanding these nonexistence results generalize to a broader context certain  estimates and rigidity obtained when studying warped product Einstein manifolds. When the soliton is shrinking, it is presented as a nonexistence theorem with no counterpart in the Einstein case, which is proved using properties of the first eigenvalue of a weighted Laplacian.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140594304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The boundedness of operators on weighted multi-parameter mixed Hardy spaces 加权多参数混合哈代空间上算子的有界性
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-04-03 DOI: 10.1002/mana.202300291
Wei Ding, Min Gu, YuePing Zhu
{"title":"The boundedness of operators on weighted multi-parameter mixed Hardy spaces","authors":"Wei Ding,&nbsp;Min Gu,&nbsp;YuePing Zhu","doi":"10.1002/mana.202300291","DOIUrl":"10.1002/mana.202300291","url":null,"abstract":"<p>In this paper, we discuss the boundedness of mixed Journé's class operators on weighted multi-parameter mixed Hardy spaces via atoms decomposition. Moreover, we give a specific singular integral operator in mixed Journé's class which has better properties.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140594231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endpoint estimates for harmonic analysis operators associated with Laguerre polynomial expansions 与拉盖尔多项式展开相关的谐波分析算子的终点估计值
IF 1 3区 数学
Mathematische Nachrichten Pub Date : 2024-03-27 DOI: 10.1002/mana.202300088
Jorge J. Betancor, Estefanía Dalmasso, Pablo Quijano, Roberto Scotto
{"title":"Endpoint estimates for harmonic analysis operators associated with Laguerre polynomial expansions","authors":"Jorge J. Betancor,&nbsp;Estefanía Dalmasso,&nbsp;Pablo Quijano,&nbsp;Roberto Scotto","doi":"10.1002/mana.202300088","DOIUrl":"10.1002/mana.202300088","url":null,"abstract":"<p>In this paper, we give a criterion to prove boundedness results for several operators from the Hardy-type space <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>0</mn>\u0000 <mo>,</mo>\u0000 <mi>∞</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mi>d</mi>\u0000 </msup>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>γ</mi>\u0000 <mi>α</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$H^1((0,infty)^d,gamma _alpha)$</annotation>\u0000 </semantics></math> to <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>0</mn>\u0000 <mo>,</mo>\u0000 <mi>∞</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mi>d</mi>\u0000 </msup>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>γ</mi>\u0000 <mi>α</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$L^1((0,infty)^d,gamma _alpha)$</annotation>\u0000 </semantics></math> and also from <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mi>∞</mi>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>0</mn>\u0000 <mo>,</mo>\u0000 <mi>∞</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mi>d</mi>\u0000 </msup>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>γ</mi>\u0000 <mi>α</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$L^infty ((0,infty)^d,gamma _alpha)$</annotation>\u0000 </semantics></math> to the space of functions of bounded mean oscillation <span></span><math>\u0000 ","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140323080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kirchhoff-type critical fractional Laplacian system with convolution and magnetic field 带卷积和磁场的基尔霍夫型临界分数拉普拉斯系统
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-03-27 DOI: 10.1002/mana.202200172
Sihua Liang, Binlin Zhang
{"title":"Kirchhoff-type critical fractional Laplacian system with convolution and magnetic field","authors":"Sihua Liang,&nbsp;Binlin Zhang","doi":"10.1002/mana.202200172","DOIUrl":"10.1002/mana.202200172","url":null,"abstract":"<p>In this paper, we consider a class of upper critical Kirchhoff-type fractional Laplacian system with Choquard nonlinearities and magnetic fields. With the help of the limit index theory and the concentration–compactness principles for fractional Sobolev spaces, we establish the existence of infinitely many nontrivial radial solutions for the above system. A distinguished feature of this paper is that the above Kirchhoff-type system is degenerate, that is, the Kirchhoff term is zero at zero.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140322881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a class of doubly nonlinear evolution equations in Musielak–Orlicz spaces 论 Musielak-Orlicz 空间中的一类双非线性演化方程
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-03-26 DOI: 10.1002/mana.202300374
Goro Akagi, Giulio Schimperna
{"title":"On a class of doubly nonlinear evolution equations in Musielak–Orlicz spaces","authors":"Goro Akagi,&nbsp;Giulio Schimperna","doi":"10.1002/mana.202300374","DOIUrl":"10.1002/mana.202300374","url":null,"abstract":"<p>This paper is concerned with a parabolic evolution equation of the form <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>A</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>u</mi>\u0000 <mi>t</mi>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>+</mo>\u0000 <mi>B</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>u</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>=</mo>\u0000 <mi>f</mi>\u0000 </mrow>\u0000 <annotation>$A(u_t) + B(u) = f$</annotation>\u0000 </semantics></math>, settled in a smooth bounded domain of <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>d</mi>\u0000 </msup>\u0000 <annotation>$mathbb {R}^d$</annotation>\u0000 </semantics></math>, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>≥</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$dge 1$</annotation>\u0000 </semantics></math>, and complemented with the initial conditions and with (for simplicity) homogeneous Dirichlet boundary conditions. Here, <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mi>B</mi>\u0000 </mrow>\u0000 <annotation>$-B$</annotation>\u0000 </semantics></math> stands for a diffusion operator, possibly nonlinear, which may range in a very wide class, including the Laplacian, the <span></span><math>\u0000 <semantics>\u0000 <mi>m</mi>\u0000 <annotation>$m$</annotation>\u0000 </semantics></math>-Laplacian for suitable <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 <mo>∈</mo>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mi>∞</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$min (1,infty)$</annotation>\u0000 </semantics></math>, the “variable-exponent” <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>m</mi>\u0000 <mo>(</mo>\u0000 <mi>x</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$m(x)$</annotation>\u0000 </semantics></math>-Laplacian, or even some fractional order operators. The operator <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$A$</annotation>\u0000 </semantics></math> is assumed to be in the form <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>[</mo>\u0000 <mi>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140303081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The W ( E 6 ) $W(E_6)$ -invariant birational geometry of the moduli space of marked cubic surfaces 有标记立方曲面模空间的 W(E6)$W(E_6)$ 不变双曲几何学
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-03-22 DOI: 10.1002/mana.202300459
Nolan Schock
{"title":"The \u0000 \u0000 \u0000 W\u0000 (\u0000 \u0000 E\u0000 6\u0000 \u0000 )\u0000 \u0000 $W(E_6)$\u0000 -invariant birational geometry of the moduli space of marked cubic surfaces","authors":"Nolan Schock","doi":"10.1002/mana.202300459","DOIUrl":"10.1002/mana.202300459","url":null,"abstract":"<p>The moduli space <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Y</mi>\u0000 <mo>=</mo>\u0000 <mi>Y</mi>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>E</mi>\u0000 <mn>6</mn>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$Y = Y(E_6)$</annotation>\u0000 </semantics></math> of marked cubic surfaces is one of the most classical moduli spaces in algebraic geometry, dating back to the nineteenth-century work of Cayley and Salmon. Modern interest in <span></span><math>\u0000 <semantics>\u0000 <mi>Y</mi>\u0000 <annotation>$Y$</annotation>\u0000 </semantics></math> was restored in the 1980s by Naruki's explicit construction of a <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>W</mi>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>E</mi>\u0000 <mn>6</mn>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$W(E_6)$</annotation>\u0000 </semantics></math>-equivariant smooth projective compactification <span></span><math>\u0000 <semantics>\u0000 <mover>\u0000 <mi>Y</mi>\u0000 <mo>¯</mo>\u0000 </mover>\u0000 <annotation>${overline{Y}}$</annotation>\u0000 </semantics></math> of <span></span><math>\u0000 <semantics>\u0000 <mi>Y</mi>\u0000 <annotation>$Y$</annotation>\u0000 </semantics></math>, and in the 2000s by Hacking, Keel, and Tevelev's construction of the Kollár–Shepherd-Barron–Alexeev (KSBA) stable pair compactification <span></span><math>\u0000 <semantics>\u0000 <mover>\u0000 <mi>Y</mi>\u0000 <mo>∼</mo>\u0000 </mover>\u0000 <annotation>${widetilde{Y}}$</annotation>\u0000 </semantics></math> of <span></span><math>\u0000 <semantics>\u0000 <mi>Y</mi>\u0000 <annotation>$Y$</annotation>\u0000 </semantics></math> as a natural sequence of blowups of <span></span><math>\u0000 <semantics>\u0000 <mover>\u0000 <mi>Y</mi>\u0000 <mo>¯</mo>\u0000 </mover>\u0000 <annotation>${overline{Y}}$</annotation>\u0000 </semantics></math>. We describe generators for the cones of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>W</mi>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>E</mi>\u0000 <mn>6</mn>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300459","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140198209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniform bounds of families of analytic semigroups and Lyapunov Linear Stability of planar fronts 解析半群族的统一边界和平面前沿的李亚普诺夫线性稳定性
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-03-22 DOI: 10.1002/mana.202300273
Yuri Latushkin, Alin Pogan
{"title":"Uniform bounds of families of analytic semigroups and Lyapunov Linear Stability of planar fronts","authors":"Yuri Latushkin,&nbsp;Alin Pogan","doi":"10.1002/mana.202300273","DOIUrl":"10.1002/mana.202300273","url":null,"abstract":"<p>We study families of analytic semigroups, acting on a Banach space, and depending on a parameter, and give sufficient conditions for existence of uniform with respect to the parameter norm bounds using spectral properties of the respective semigroup generators. In particular, we use estimates of the resolvent operators of the generators along vertical segments to estimate the growth/decay rate of the norm for the family of analytic semigroups. These results are applied to prove the Lyapunov linear stability of planar traveling waves of systems of reaction–diffusion equations, and the bidomain equation, important in electrophysiology.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140197701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equivariant K $K$ -theory of flag Bott manifolds of general Lie type 一般李型旗底流形的等变 K$K$ 理论
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-03-22 DOI: 10.1002/mana.202300423
Bidhan Paul, Vikraman Uma
{"title":"Equivariant \u0000 \u0000 K\u0000 $K$\u0000 -theory of flag Bott manifolds of general Lie type","authors":"Bidhan Paul,&nbsp;Vikraman Uma","doi":"10.1002/mana.202300423","DOIUrl":"10.1002/mana.202300423","url":null,"abstract":"<p>The aim of this paper is to describe the equivariant and ordinary Grothendieck ring and the equivariant and ordinary topological <span></span><math>\u0000 <semantics>\u0000 <mi>K</mi>\u0000 <annotation>$K$</annotation>\u0000 </semantics></math>-ring of flag Bott manifolds of the general Lie type. This will generalize the results on the equivariant and ordinary cohomology of flag Bott manifolds of the general Lie type due to Kaji, Kuroki, Lee, and Suh.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140197697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Second-order trace formulas 二阶轨迹公式
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-03-22 DOI: 10.1002/mana.202200295
Arup Chattopadhyay, Soma Das, Chandan Pradhan
{"title":"Second-order trace formulas","authors":"Arup Chattopadhyay,&nbsp;Soma Das,&nbsp;Chandan Pradhan","doi":"10.1002/mana.202200295","DOIUrl":"10.1002/mana.202200295","url":null,"abstract":"<p>Koplienko [Sib. Mat. Zh. 25 (1984), 62–71; English transl. in Siberian Math. J. 25 (1984), 735–743] found a trace formula for perturbations of self-adjoint operators by operators of Hilbert–Schmidt class <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>B</mi>\u0000 <mn>2</mn>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>H</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathcal {B}_2(mathcal {H})$</annotation>\u0000 </semantics></math>. Later, Neidhardt introduced a similar formula in the case of pairs of unitaries <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>U</mi>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>U</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(U,U_0)$</annotation>\u0000 </semantics></math> via multiplicative path in [Math. Nachr. 138 (1988), 7–25]. In 2012, Potapov and Sukochev [Comm. Math. Phys. 309 (2012), no. 3, 693–702] obtained a trace formula like the Koplienko trace formula for pairs of contractions by answering an open question posed by Gesztesy, Pushnitski, and Simon [Zh. Mat. Fiz. Anal. Geom. 4 (2008), no. 1, 63–107, 202; Open Question 11.2]. In this paper, we supply a new proof of the Koplienko trace formula in the case of pairs of contractions <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>T</mi>\u0000 <mo>,</mo>\u0000 <msub>\u0000 <mi>T</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(T,T_0)$</annotation>\u0000 </semantics></math>, where the initial operator <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>T</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <annotation>$T_0$</annotation>\u0000 </semantics></math> is normal, via linear path by reducing the problem to a finite-dimensional one as in the proof of Krein's trace formula by Voiculescu [Oper. Theory Adv. Appl. 24 (1987) 329–332] and Sinha and Mohapatra [Proc. Indian Acad. Sci. Math. Sci. 104 (1994), no. 4, 819–853] and [Integral Equations Operator Theory 24 (1996), no. 3, 285–297]. Consequently, we obtain the Koplienko trace formula for a class of pairs of contractions using the Schäffer matrix unitary dilation. Moreover, we also obtain the Koplienko trace formula for a pair of self-adjoint operators and maximal dissipative operators using the Cayley transform. At the end, we extend the Koplienko–Neidhardt trace formula for a class of pairs of contractions <span></span","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140197619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信