Valentina Franceschi, Kiyan Naderi, Konstantin Pankrashkin
{"title":"Embedded trace operator for infinite metric trees","authors":"Valentina Franceschi, Kiyan Naderi, Konstantin Pankrashkin","doi":"10.1002/mana.202300574","DOIUrl":null,"url":null,"abstract":"<p>We consider a class of infinite weighted metric trees obtained as perturbations of self-similar regular trees. Possible definitions of the boundary traces of functions in the Sobolev space on such a structure are discussed by using identifications of the tree boundary with a surface. Our approach unifies some constructions proposed by Maury, Salort, and Vannier for discrete weighted dyadic trees (expansion in orthogonal bases of harmonic functions on the graph and using Haar-type bases on the domain representing the boundary), and by Nicaise and Semin and Joly, Kachanovska, and Semin for fractal metric trees (approximation by finite sections and identification of the boundary with a interval): We show that both machineries give the same trace map, and for a range of parameters we establish the precise Sobolev regularity of the traces. In addition, we introduce new geometric ingredients by proposing an identification with arbitrary Riemannian manifolds. It is shown that any compact manifold admits a suitable multiscale decomposition and, therefore, can be identified with a metric tree boundary in the context of trace theorems.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 1","pages":"190-243"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300574","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300574","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a class of infinite weighted metric trees obtained as perturbations of self-similar regular trees. Possible definitions of the boundary traces of functions in the Sobolev space on such a structure are discussed by using identifications of the tree boundary with a surface. Our approach unifies some constructions proposed by Maury, Salort, and Vannier for discrete weighted dyadic trees (expansion in orthogonal bases of harmonic functions on the graph and using Haar-type bases on the domain representing the boundary), and by Nicaise and Semin and Joly, Kachanovska, and Semin for fractal metric trees (approximation by finite sections and identification of the boundary with a interval): We show that both machineries give the same trace map, and for a range of parameters we establish the precise Sobolev regularity of the traces. In addition, we introduce new geometric ingredients by proposing an identification with arbitrary Riemannian manifolds. It is shown that any compact manifold admits a suitable multiscale decomposition and, therefore, can be identified with a metric tree boundary in the context of trace theorems.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index