v形波导中的分数阶拉普拉斯算子

IF 0.8 3区 数学 Q2 MATHEMATICS
Fedor Bakharev, Sergey Matveenko
{"title":"v形波导中的分数阶拉普拉斯算子","authors":"Fedor Bakharev,&nbsp;Sergey Matveenko","doi":"10.1002/mana.202400271","DOIUrl":null,"url":null,"abstract":"<p>The spectral properties of the restricted fractional Dirichlet Laplacian in <span>V</span>-shaped waveguides are studied. The continuous spectrum for such domains with cylindrical outlets is known to occupy the ray <span></span><math>\n <semantics>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Λ</mi>\n <mo>†</mo>\n </msub>\n <mo>,</mo>\n <mo>+</mo>\n <mi>∞</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$[\\Lambda _\\dagger, +\\infty)$</annotation>\n </semantics></math> with the threshold corresponding to the smallest eigenvalue of the cross-sectional problems. In this work, the presence of a discrete spectrum at any junction angle is established along with the monotonic dependence of the discrete spectrum on the angle.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"427-436"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional Laplacian in V-shaped waveguide\",\"authors\":\"Fedor Bakharev,&nbsp;Sergey Matveenko\",\"doi\":\"10.1002/mana.202400271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The spectral properties of the restricted fractional Dirichlet Laplacian in <span>V</span>-shaped waveguides are studied. The continuous spectrum for such domains with cylindrical outlets is known to occupy the ray <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>[</mo>\\n <msub>\\n <mi>Λ</mi>\\n <mo>†</mo>\\n </msub>\\n <mo>,</mo>\\n <mo>+</mo>\\n <mi>∞</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$[\\\\Lambda _\\\\dagger, +\\\\infty)$</annotation>\\n </semantics></math> with the threshold corresponding to the smallest eigenvalue of the cross-sectional problems. In this work, the presence of a discrete spectrum at any junction angle is established along with the monotonic dependence of the discrete spectrum on the angle.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 2\",\"pages\":\"427-436\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400271\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400271","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了v形波导中受限分数阶狄利克雷拉普拉斯算子的谱性质。已知具有圆柱形出口的域的连续谱占用射线[Λ†,+∞)$[\Lambda _\dagger, +\infty)$,其阈值对应于截面问题的最小特征值。在这项工作中,建立了在任何结角处离散谱的存在以及离散谱对该角的单调依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional Laplacian in V-shaped waveguide

The spectral properties of the restricted fractional Dirichlet Laplacian in V-shaped waveguides are studied. The continuous spectrum for such domains with cylindrical outlets is known to occupy the ray [ Λ , + ) $[\Lambda _\dagger, +\infty)$ with the threshold corresponding to the smallest eigenvalue of the cross-sectional problems. In this work, the presence of a discrete spectrum at any junction angle is established along with the monotonic dependence of the discrete spectrum on the angle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信