有限群作为等距群的实现及极小性问题

IF 0.8 3区 数学 Q2 MATHEMATICS
Pedro J. Chocano
{"title":"有限群作为等距群的实现及极小性问题","authors":"Pedro J. Chocano","doi":"10.1002/mana.202400287","DOIUrl":null,"url":null,"abstract":"<p>A finite group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is said to be realized by a finite subset <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> of a Euclidean space <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math> if the isometry group of <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> is isomorphic to <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. We prove that every finite group can be realized by a finite subset <span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mrow>\n <mo>|</mo>\n <mi>G</mi>\n <mo>|</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$V\\subset \\mathbb {R}^{|G|}$</annotation>\n </semantics></math> consisting of <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>|</mo>\n <mi>G</mi>\n <mo>|</mo>\n <mo>(</mo>\n <mo>|</mo>\n <mi>S</mi>\n <mo>|</mo>\n </mrow>\n <mo>+</mo>\n <mrow>\n <mn>1</mn>\n <mo>)</mo>\n <mo>(</mo>\n </mrow>\n <mo>≤</mo>\n <mrow>\n <mo>|</mo>\n <mi>G</mi>\n <mo>|</mo>\n <mo>(</mo>\n </mrow>\n <msub>\n <mi>log</mi>\n <mn>2</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mo>|</mo>\n <mi>G</mi>\n <mo>|</mo>\n <mo>)</mo>\n </mrow>\n <mo>+</mo>\n <mrow>\n <mn>1</mn>\n <mo>)</mo>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$|G|(|S|+1) (\\le |G|(\\log _2(|G|)+1))$</annotation>\n </semantics></math> points, where <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> is a generating system for <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. We define <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\alpha (G)$</annotation>\n </semantics></math> as the minimum number of points required to realize <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>m</mi>\n </msup>\n <annotation>$\\mathbb {R}^m$</annotation>\n </semantics></math> for some <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>. We establish that <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>V</mi>\n <mo>|</mo>\n </mrow>\n <annotation>$|V|$</annotation>\n </semantics></math> provides a sharp upper bound for <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\alpha (G)$</annotation>\n </semantics></math> when considering minimal generating sets. Finally, we explore the relationship between <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\alpha (G)$</annotation>\n </semantics></math> and the isometry dimension of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>, that is, defined as the least dimension of the Euclidean space in which <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> can be realized.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"419-426"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400287","citationCount":"0","resultStr":"{\"title\":\"Realization of finite groups as isometry groups and problems of minimality\",\"authors\":\"Pedro J. Chocano\",\"doi\":\"10.1002/mana.202400287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A finite group <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> is said to be realized by a finite subset <span></span><math>\\n <semantics>\\n <mi>V</mi>\\n <annotation>$V$</annotation>\\n </semantics></math> of a Euclidean space <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {R}^n$</annotation>\\n </semantics></math> if the isometry group of <span></span><math>\\n <semantics>\\n <mi>V</mi>\\n <annotation>$V$</annotation>\\n </semantics></math> is isomorphic to <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>. We prove that every finite group can be realized by a finite subset <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>V</mi>\\n <mo>⊂</mo>\\n <msup>\\n <mi>R</mi>\\n <mrow>\\n <mo>|</mo>\\n <mi>G</mi>\\n <mo>|</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$V\\\\subset \\\\mathbb {R}^{|G|}$</annotation>\\n </semantics></math> consisting of <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>|</mo>\\n <mi>G</mi>\\n <mo>|</mo>\\n <mo>(</mo>\\n <mo>|</mo>\\n <mi>S</mi>\\n <mo>|</mo>\\n </mrow>\\n <mo>+</mo>\\n <mrow>\\n <mn>1</mn>\\n <mo>)</mo>\\n <mo>(</mo>\\n </mrow>\\n <mo>≤</mo>\\n <mrow>\\n <mo>|</mo>\\n <mi>G</mi>\\n <mo>|</mo>\\n <mo>(</mo>\\n </mrow>\\n <msub>\\n <mi>log</mi>\\n <mn>2</mn>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mo>|</mo>\\n <mi>G</mi>\\n <mo>|</mo>\\n <mo>)</mo>\\n </mrow>\\n <mo>+</mo>\\n <mrow>\\n <mn>1</mn>\\n <mo>)</mo>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$|G|(|S|+1) (\\\\le |G|(\\\\log _2(|G|)+1))$</annotation>\\n </semantics></math> points, where <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math> is a generating system for <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>. We define <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\alpha (G)$</annotation>\\n </semantics></math> as the minimum number of points required to realize <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>m</mi>\\n </msup>\\n <annotation>$\\\\mathbb {R}^m$</annotation>\\n </semantics></math> for some <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$m$</annotation>\\n </semantics></math>. We establish that <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>|</mo>\\n <mi>V</mi>\\n <mo>|</mo>\\n </mrow>\\n <annotation>$|V|$</annotation>\\n </semantics></math> provides a sharp upper bound for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\alpha (G)$</annotation>\\n </semantics></math> when considering minimal generating sets. Finally, we explore the relationship between <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>α</mi>\\n <mo>(</mo>\\n <mi>G</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\alpha (G)$</annotation>\\n </semantics></math> and the isometry dimension of <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>, that is, defined as the least dimension of the Euclidean space in which <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> can be realized.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 2\",\"pages\":\"419-426\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400287\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400287\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400287","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

一个有限群G $G$被认为是由欧几里德空间R n $\mathbb {R}^n$的一个有限子集V $V$来实现的,如果V $V$的等距群与G同构$G$。我们证明了每一个有限群都可以由一个有限子集V∧R | G | $V\subset \mathbb {R}^{|G|}$组成| g | (| s | + 1)(≤| g | (log2 (| G |) + 1)) $|G|(|S|+1) (\le |G|(\log _2(|G|)+1))$其中S $S$是G $G$的生成系统。我们将α (G) $\alpha (G)$定义为在R m $\mathbb {R}^m$中实现G $G$所需的最小点数M $m$。我们建立了| V | $|V|$在考虑最小发电机组时,为α (G) $\alpha (G)$提供了一个明显的上界。最后,我们探讨了α (G) $\alpha (G)$与G $G$等距维数的关系,即:定义为可实现G $G$的欧几里得空间的最小维数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Realization of finite groups as isometry groups and problems of minimality

Realization of finite groups as isometry groups and problems of minimality

A finite group G $G$ is said to be realized by a finite subset V $V$ of a Euclidean space R n $\mathbb {R}^n$ if the isometry group of V $V$ is isomorphic to G $G$ . We prove that every finite group can be realized by a finite subset V R | G | $V\subset \mathbb {R}^{|G|}$ consisting of | G | ( | S | + 1 ) ( | G | ( log 2 ( | G | ) + 1 ) ) $|G|(|S|+1) (\le |G|(\log _2(|G|)+1))$ points, where S $S$ is a generating system for G $G$ . We define α ( G ) $\alpha (G)$ as the minimum number of points required to realize G $G$ in R m $\mathbb {R}^m$ for some m $m$ . We establish that | V | $|V|$ provides a sharp upper bound for α ( G ) $\alpha (G)$ when considering minimal generating sets. Finally, we explore the relationship between α ( G ) $\alpha (G)$ and the isometry dimension of G $G$ , that is, defined as the least dimension of the Euclidean space in which G $G$ can be realized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信