Realization of finite groups as isometry groups and problems of minimality

IF 0.8 3区 数学 Q2 MATHEMATICS
Pedro J. Chocano
{"title":"Realization of finite groups as isometry groups and problems of minimality","authors":"Pedro J. Chocano","doi":"10.1002/mana.202400287","DOIUrl":null,"url":null,"abstract":"<p>A finite group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is said to be realized by a finite subset <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> of a Euclidean space <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math> if the isometry group of <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> is isomorphic to <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. We prove that every finite group can be realized by a finite subset <span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mrow>\n <mo>|</mo>\n <mi>G</mi>\n <mo>|</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$V\\subset \\mathbb {R}^{|G|}$</annotation>\n </semantics></math> consisting of <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>|</mo>\n <mi>G</mi>\n <mo>|</mo>\n <mo>(</mo>\n <mo>|</mo>\n <mi>S</mi>\n <mo>|</mo>\n </mrow>\n <mo>+</mo>\n <mrow>\n <mn>1</mn>\n <mo>)</mo>\n <mo>(</mo>\n </mrow>\n <mo>≤</mo>\n <mrow>\n <mo>|</mo>\n <mi>G</mi>\n <mo>|</mo>\n <mo>(</mo>\n </mrow>\n <msub>\n <mi>log</mi>\n <mn>2</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mo>|</mo>\n <mi>G</mi>\n <mo>|</mo>\n <mo>)</mo>\n </mrow>\n <mo>+</mo>\n <mrow>\n <mn>1</mn>\n <mo>)</mo>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$|G|(|S|+1) (\\le |G|(\\log _2(|G|)+1))$</annotation>\n </semantics></math> points, where <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> is a generating system for <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. We define <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\alpha (G)$</annotation>\n </semantics></math> as the minimum number of points required to realize <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>m</mi>\n </msup>\n <annotation>$\\mathbb {R}^m$</annotation>\n </semantics></math> for some <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>. We establish that <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>V</mi>\n <mo>|</mo>\n </mrow>\n <annotation>$|V|$</annotation>\n </semantics></math> provides a sharp upper bound for <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\alpha (G)$</annotation>\n </semantics></math> when considering minimal generating sets. Finally, we explore the relationship between <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\alpha (G)$</annotation>\n </semantics></math> and the isometry dimension of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>, that is, defined as the least dimension of the Euclidean space in which <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> can be realized.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"419-426"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400287","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400287","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A finite group G $G$ is said to be realized by a finite subset V $V$ of a Euclidean space R n $\mathbb {R}^n$ if the isometry group of V $V$ is isomorphic to G $G$ . We prove that every finite group can be realized by a finite subset V R | G | $V\subset \mathbb {R}^{|G|}$ consisting of | G | ( | S | + 1 ) ( | G | ( log 2 ( | G | ) + 1 ) ) $|G|(|S|+1) (\le |G|(\log _2(|G|)+1))$ points, where S $S$ is a generating system for G $G$ . We define α ( G ) $\alpha (G)$ as the minimum number of points required to realize G $G$ in R m $\mathbb {R}^m$ for some m $m$ . We establish that | V | $|V|$ provides a sharp upper bound for α ( G ) $\alpha (G)$ when considering minimal generating sets. Finally, we explore the relationship between α ( G ) $\alpha (G)$ and the isometry dimension of G $G$ , that is, defined as the least dimension of the Euclidean space in which G $G$ can be realized.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信