{"title":"Realization of finite groups as isometry groups and problems of minimality","authors":"Pedro J. Chocano","doi":"10.1002/mana.202400287","DOIUrl":null,"url":null,"abstract":"<p>A finite group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is said to be realized by a finite subset <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> of a Euclidean space <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math> if the isometry group of <span></span><math>\n <semantics>\n <mi>V</mi>\n <annotation>$V$</annotation>\n </semantics></math> is isomorphic to <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. We prove that every finite group can be realized by a finite subset <span></span><math>\n <semantics>\n <mrow>\n <mi>V</mi>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mrow>\n <mo>|</mo>\n <mi>G</mi>\n <mo>|</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$V\\subset \\mathbb {R}^{|G|}$</annotation>\n </semantics></math> consisting of <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>|</mo>\n <mi>G</mi>\n <mo>|</mo>\n <mo>(</mo>\n <mo>|</mo>\n <mi>S</mi>\n <mo>|</mo>\n </mrow>\n <mo>+</mo>\n <mrow>\n <mn>1</mn>\n <mo>)</mo>\n <mo>(</mo>\n </mrow>\n <mo>≤</mo>\n <mrow>\n <mo>|</mo>\n <mi>G</mi>\n <mo>|</mo>\n <mo>(</mo>\n </mrow>\n <msub>\n <mi>log</mi>\n <mn>2</mn>\n </msub>\n <mrow>\n <mo>(</mo>\n <mo>|</mo>\n <mi>G</mi>\n <mo>|</mo>\n <mo>)</mo>\n </mrow>\n <mo>+</mo>\n <mrow>\n <mn>1</mn>\n <mo>)</mo>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$|G|(|S|+1) (\\le |G|(\\log _2(|G|)+1))$</annotation>\n </semantics></math> points, where <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math> is a generating system for <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. We define <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\alpha (G)$</annotation>\n </semantics></math> as the minimum number of points required to realize <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>m</mi>\n </msup>\n <annotation>$\\mathbb {R}^m$</annotation>\n </semantics></math> for some <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>. We establish that <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n <mi>V</mi>\n <mo>|</mo>\n </mrow>\n <annotation>$|V|$</annotation>\n </semantics></math> provides a sharp upper bound for <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\alpha (G)$</annotation>\n </semantics></math> when considering minimal generating sets. Finally, we explore the relationship between <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>(</mo>\n <mi>G</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\alpha (G)$</annotation>\n </semantics></math> and the isometry dimension of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>, that is, defined as the least dimension of the Euclidean space in which <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> can be realized.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"419-426"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400287","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400287","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A finite group is said to be realized by a finite subset of a Euclidean space if the isometry group of is isomorphic to . We prove that every finite group can be realized by a finite subset consisting of points, where is a generating system for . We define as the minimum number of points required to realize in for some . We establish that provides a sharp upper bound for when considering minimal generating sets. Finally, we explore the relationship between and the isometry dimension of , that is, defined as the least dimension of the Euclidean space in which can be realized.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index