Mathematische Nachrichten最新文献

筛选
英文 中文
Three-parameter Triebel–Lizorkin spaces associated with a sum of two flag singular integrals 与两个标志奇异积分和相关的三参数triiebel - lizorkin空间
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-12-11 DOI: 10.1002/mana.202400208
Yan Chen, Xiangxing Tao, Taotao Zheng
{"title":"Three-parameter Triebel–Lizorkin spaces associated with a sum of two flag singular integrals","authors":"Yan Chen,&nbsp;Xiangxing Tao,&nbsp;Taotao Zheng","doi":"10.1002/mana.202400208","DOIUrl":"https://doi.org/10.1002/mana.202400208","url":null,"abstract":"<p>In this paper, the authors establish the three-parameter Triebel–Lizorkin spaces and characterize these spaces as the intersection of two flag Triebel–Lizorkin spaces by applying the discrete Littlewood–Paley–Stein analysis. Moreover, they obtain the boundedness of product singular integral operators on the three-parameter Triebel–Lizorkin spaces.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"581-601"},"PeriodicalIF":0.8,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entropy numbers and box dimension of polynomials and holomorphic functions 多项式和全态函数的熵数和箱维数
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-11-29 DOI: 10.1002/mana.202400042
Daniel Carando, Carlos D'Andrea, Leodan A. Torres, Pablo Turco
{"title":"Entropy numbers and box dimension of polynomials and holomorphic functions","authors":"Daniel Carando,&nbsp;Carlos D'Andrea,&nbsp;Leodan A. Torres,&nbsp;Pablo Turco","doi":"10.1002/mana.202400042","DOIUrl":"https://doi.org/10.1002/mana.202400042","url":null,"abstract":"<p>We study entropy numbers and box dimension of (the image of) homogeneous polynomials and holomorphic functions between Banach spaces. First, we see that entropy numbers and box dimensions of subsets of Banach spaces are related. We show that the box dimension of the image of a ball under a homogeneous polynomial is finite if and only if it spans a finite-dimensional subspace, but this is not true for holomorphic functions. Furthermore, we relate the entropy numbers of a holomorphic function to those of the polynomials of its Taylor series expansion. As a consequence, if the box dimension of the image of a ball by a holomorphic function <span></span><math>\u0000 <semantics>\u0000 <mi>f</mi>\u0000 <annotation>$f$</annotation>\u0000 </semantics></math> is finite, then the entropy numbers of the polynomials in the Taylor series expansion of <span></span><math>\u0000 <semantics>\u0000 <mi>f</mi>\u0000 <annotation>$f$</annotation>\u0000 </semantics></math> at any point of the ball belong to <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>ℓ</mi>\u0000 <mi>p</mi>\u0000 </msub>\u0000 <annotation>$ell _p$</annotation>\u0000 </semantics></math> for every <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 <mo>&gt;</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$p&gt;1$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"567-580"},"PeriodicalIF":0.8,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyharmonic fields and Liouville quantum gravity measures on tori of arbitrary dimension: From discrete to continuous 任意维环面上的多谐场和刘维尔量子引力测量:从离散到连续
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-11-27 DOI: 10.1002/mana.202400169
Lorenzo Dello Schiavo, Ronan Herry, Eva Kopfer, Karl-Theodor Sturm
{"title":"Polyharmonic fields and Liouville quantum gravity measures on tori of arbitrary dimension: From discrete to continuous","authors":"Lorenzo Dello Schiavo,&nbsp;Ronan Herry,&nbsp;Eva Kopfer,&nbsp;Karl-Theodor Sturm","doi":"10.1002/mana.202400169","DOIUrl":"https://doi.org/10.1002/mana.202400169","url":null,"abstract":"<p>For an arbitrary dimension <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>, we study: \u0000\u0000 </p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 1","pages":"244-281"},"PeriodicalIF":0.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400169","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143120096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Twisted conjugacy in soluble arithmetic groups 可溶算术群中的扭共轭
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-11-27 DOI: 10.1002/mana.202300448
Paula M. Lins de Araujo, Yuri Santos Rego
{"title":"Twisted conjugacy in soluble arithmetic groups","authors":"Paula M. Lins de Araujo,&nbsp;Yuri Santos Rego","doi":"10.1002/mana.202300448","DOIUrl":"https://doi.org/10.1002/mana.202300448","url":null,"abstract":"<p>Reidemeister numbers of group automorphisms encode the number of twisted conjugacy classes of groups and might yield information about self-maps of spaces related to the given objects. Here, we address a question posed by Gonçalves and Wong in the mid-2000s: we construct an infinite series of compact connected solvmanifolds (that are <i>not</i> <i>nil</i>manifolds) of strictly increasing dimensions and all of whose self-homotopy equivalences have vanishing Nielsen number. To this end, we establish a sufficient condition for a prominent (infinite) family of soluble linear groups to have the so-called property <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>R</mi>\u0000 <mi>∞</mi>\u0000 </msub>\u0000 <annotation>$R_infty$</annotation>\u0000 </semantics></math>. In particular, we generalize or complement earlier results due to Dekimpe, Gonçalves, Kochloukova, Nasybullov, Taback, Tertooy, Van den Bussche, and Wong, showing that many soluble <span></span><math>\u0000 <semantics>\u0000 <mi>S</mi>\u0000 <annotation>$S$</annotation>\u0000 </semantics></math>-arithmetic groups have <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>R</mi>\u0000 <mi>∞</mi>\u0000 </msub>\u0000 <annotation>$R_infty$</annotation>\u0000 </semantics></math> and suggesting a conjecture in this direction.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 3","pages":"763-793"},"PeriodicalIF":0.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300448","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143595679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On non-Hopf Ricci-pseudosymmetric hypersurfaces in C P 2 $mathbb {C}P^{2}$ and C H 2 $mathbb {C}H^{2}$ 论 C P 2 $mathbb {C}P^{2}$ 和 C H 2 $mathbb {C}H^{2}$ 中的非霍普夫里奇伪对称超曲面
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-11-27 DOI: 10.1002/mana.202300463
Qianshun Cui, Zejun Hu
{"title":"On non-Hopf Ricci-pseudosymmetric hypersurfaces in \u0000 \u0000 \u0000 C\u0000 \u0000 P\u0000 2\u0000 \u0000 \u0000 $mathbb {C}P^{2}$\u0000 and \u0000 \u0000 \u0000 C\u0000 \u0000 H\u0000 2\u0000 \u0000 \u0000 $mathbb {C}H^{2}$","authors":"Qianshun Cui,&nbsp;Zejun Hu","doi":"10.1002/mana.202300463","DOIUrl":"https://doi.org/10.1002/mana.202300463","url":null,"abstract":"<p>In this paper, we study an open problem raised by Cecil and Ryan [<i>Geometry of Hypersurfaces</i>, Springer Monographs in Mathematics, p. 531] which asked whether there exist non-Hopf Ricci-pseudosymmetric hypersurfaces in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$mathbb {C}P^{2}$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$mathbb {C}H^{2}$</annotation>\u0000 </semantics></math>. As our main results, we first prove the nonexistence of non-Hopf Ricci-pseudosymmetric hypersurfaces of the constant type in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$mathbb {C}H^{2}$</annotation>\u0000 </semantics></math>. Then, we prove the existence of non-Hopf Ricci-pseudosymmetric hypersurfaces of the constant type in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$mathbb {C}P^{2}$</annotation>\u0000 </semantics></math>. Finally, applying the preceding results and sharpening Theorem 4.1 of Wang and Zhang [<i>J. Geom. Phys</i>. <b>181</b> (2022), 104648], we prove the nonexistence of non-Hopf weakly Einstein hypersurfaces with constant norm of Riemannian curvature tensor in both <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$mathbb {C}P^{2}$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$mathbb {C}H^{2}$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"527-547"},"PeriodicalIF":0.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstract integro-differential equations with state-dependent integration intervals: Existence, uniqueness, and local well-posedness 具有状态相关积分区间的积分微分方程:存在性、唯一性和局部适定性
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-11-27 DOI: 10.1002/mana.202400126
Eduardo Hernandez, Shashank Pandey, Dwijendra N. Pandey
{"title":"Abstract integro-differential equations with state-dependent integration intervals: Existence, uniqueness, and local well-posedness","authors":"Eduardo Hernandez,&nbsp;Shashank Pandey,&nbsp;Dwijendra N. Pandey","doi":"10.1002/mana.202400126","DOIUrl":"https://doi.org/10.1002/mana.202400126","url":null,"abstract":"<p>In this work, we study a new class of integro-differential equations with delay, where the informations from the past are represented as an average of the state over state-dependent integration intervals. We establish results on the local and global existence and qualitative properties of solutions. The models presented and the ideas developed will allow the generalization of an extensive literature on different classes of functional differential equations. The last section presents some examples motivated by integro-differential equations arising in the theory of population dynamics.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 1","pages":"356-384"},"PeriodicalIF":0.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143120066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of the log-convex minorant of a sequence { M α } α ∈ N 0 d $lbrace M_alpha rbrace _{alpha in mathbb {N}_0^d}$ 序列{M α} α∈n0 d $lbrace M_alpha rbrace _{alpha in mathbb {N}_0^d}$的对数凸次幂的构造
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-11-27 DOI: 10.1002/mana.202400135
Chiara Boiti, David Jornet, Alessandro Oliaro, Gerhard Schindl
{"title":"Construction of the log-convex minorant of a sequence \u0000 \u0000 \u0000 \u0000 {\u0000 \u0000 M\u0000 α\u0000 \u0000 }\u0000 \u0000 \u0000 α\u0000 ∈\u0000 \u0000 N\u0000 0\u0000 d\u0000 \u0000 \u0000 \u0000 $lbrace M_alpha rbrace _{alpha in mathbb {N}_0^d}$","authors":"Chiara Boiti,&nbsp;David Jornet,&nbsp;Alessandro Oliaro,&nbsp;Gerhard Schindl","doi":"10.1002/mana.202400135","DOIUrl":"https://doi.org/10.1002/mana.202400135","url":null,"abstract":"&lt;p&gt;We give a simple construction of the log-convex minorant of a sequence &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;{&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;}&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;mo&gt;∈&lt;/mo&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$lbrace M_alpha rbrace _{alpha in mathbb {N}_0^d}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and consequently extend to the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;annotation&gt;$d$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-dimensional case the well-known formula that relates a log-convex sequence &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;{&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;}&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;mo&gt;∈&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$lbrace M_prbrace _{pin mathbb {N}_0}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; to its associated function &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;ω&lt;/mi&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$omega _M$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, that is, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mo&gt;sup&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;mo&gt;&gt;&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mi&gt;exp&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;m","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"456-477"},"PeriodicalIF":0.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400135","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partitions in real quadratic fields 实二次域中的分区
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-11-27 DOI: 10.1002/mana.202300480
David Stern, Mikuláš Zindulka
{"title":"Partitions in real quadratic fields","authors":"David Stern,&nbsp;Mikuláš Zindulka","doi":"10.1002/mana.202300480","DOIUrl":"https://doi.org/10.1002/mana.202300480","url":null,"abstract":"<p>We study partitions of totally positive integers in real quadratic fields. We develop an algorithm for computing the number of partitions, prove a result about the parity of the partition function, and characterize the quadratic fields such that there exists an element with exactly 1–5, 7, and 11 partitions.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"548-566"},"PeriodicalIF":0.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300480","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Curvature of quaternionic skew-Hermitian manifolds and bundle constructions 四元数斜厄米流形的曲率与束结构
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-11-27 DOI: 10.1002/mana.202400301
Ioannis Chrysikos, Vicente Cortés, Jan Gregorovič
{"title":"Curvature of quaternionic skew-Hermitian manifolds and bundle constructions","authors":"Ioannis Chrysikos,&nbsp;Vicente Cortés,&nbsp;Jan Gregorovič","doi":"10.1002/mana.202400301","DOIUrl":"https://doi.org/10.1002/mana.202400301","url":null,"abstract":"<p>This paper is devoted to a description of the second-order differential geometry of torsion-free almost quaternionic skew-Hermitian manifolds, that is, of quaternionic skew-Hermitian manifolds <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>M</mi>\u0000 <mo>,</mo>\u0000 <mi>Q</mi>\u0000 <mo>,</mo>\u0000 <mi>ω</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(M, Q, omega)$</annotation>\u0000 </semantics></math>. We provide a curvature characterization of such integrable geometric structures, based on the holonomy theory of symplectic connections and we study qualitative properties of the induced Ricci tensor. Then, we proceed with bundle constructions over such a manifold <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>M</mi>\u0000 <mo>,</mo>\u0000 <mi>Q</mi>\u0000 <mo>,</mo>\u0000 <mi>ω</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(M, Q, omega)$</annotation>\u0000 </semantics></math>. In particular, we prove the existence of almost hypercomplex skew-Hermitian structures on the Swann bundle over <i>M</i> and investigate their integrability.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 1","pages":"87-112"},"PeriodicalIF":0.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400301","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143120095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laplacian with singular drift in a critical borderline case 临界边界情况下奇异漂移的拉普拉斯算子
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-11-27 DOI: 10.1002/mana.202400098
D. Kinzebulatov
{"title":"Laplacian with singular drift in a critical borderline case","authors":"D. Kinzebulatov","doi":"10.1002/mana.202400098","DOIUrl":"https://doi.org/10.1002/mana.202400098","url":null,"abstract":"<p>We establish well-posedness and regularity results for parabolic diffusion equation on the torus in the case when the singularities of a general drift reach the critical magnitude. The latter dictates the need to work in an Orlicz space situated between all <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mi>p</mi>\u0000 </msup>\u0000 <annotation>$L^p$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mi>∞</mi>\u0000 </msup>\u0000 <annotation>$L^infty$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"511-526"},"PeriodicalIF":0.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信