{"title":"可溶算术群中的扭共轭","authors":"Paula M. Lins de Araujo, Yuri Santos Rego","doi":"10.1002/mana.202300448","DOIUrl":null,"url":null,"abstract":"<p>Reidemeister numbers of group automorphisms encode the number of twisted conjugacy classes of groups and might yield information about self-maps of spaces related to the given objects. Here, we address a question posed by Gonçalves and Wong in the mid-2000s: we construct an infinite series of compact connected solvmanifolds (that are <i>not</i> <i>nil</i>manifolds) of strictly increasing dimensions and all of whose self-homotopy equivalences have vanishing Nielsen number. To this end, we establish a sufficient condition for a prominent (infinite) family of soluble linear groups to have the so-called property <span></span><math>\n <semantics>\n <msub>\n <mi>R</mi>\n <mi>∞</mi>\n </msub>\n <annotation>$R_\\infty$</annotation>\n </semantics></math>. In particular, we generalize or complement earlier results due to Dekimpe, Gonçalves, Kochloukova, Nasybullov, Taback, Tertooy, Van den Bussche, and Wong, showing that many soluble <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>-arithmetic groups have <span></span><math>\n <semantics>\n <msub>\n <mi>R</mi>\n <mi>∞</mi>\n </msub>\n <annotation>$R_\\infty$</annotation>\n </semantics></math> and suggesting a conjecture in this direction.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 3","pages":"763-793"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300448","citationCount":"0","resultStr":"{\"title\":\"Twisted conjugacy in soluble arithmetic groups\",\"authors\":\"Paula M. Lins de Araujo, Yuri Santos Rego\",\"doi\":\"10.1002/mana.202300448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reidemeister numbers of group automorphisms encode the number of twisted conjugacy classes of groups and might yield information about self-maps of spaces related to the given objects. Here, we address a question posed by Gonçalves and Wong in the mid-2000s: we construct an infinite series of compact connected solvmanifolds (that are <i>not</i> <i>nil</i>manifolds) of strictly increasing dimensions and all of whose self-homotopy equivalences have vanishing Nielsen number. To this end, we establish a sufficient condition for a prominent (infinite) family of soluble linear groups to have the so-called property <span></span><math>\\n <semantics>\\n <msub>\\n <mi>R</mi>\\n <mi>∞</mi>\\n </msub>\\n <annotation>$R_\\\\infty$</annotation>\\n </semantics></math>. In particular, we generalize or complement earlier results due to Dekimpe, Gonçalves, Kochloukova, Nasybullov, Taback, Tertooy, Van den Bussche, and Wong, showing that many soluble <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math>-arithmetic groups have <span></span><math>\\n <semantics>\\n <msub>\\n <mi>R</mi>\\n <mi>∞</mi>\\n </msub>\\n <annotation>$R_\\\\infty$</annotation>\\n </semantics></math> and suggesting a conjecture in this direction.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 3\",\"pages\":\"763-793\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300448\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300448\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300448","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
群自同构的Reidemeister数编码了群的扭曲共轭类的数量,并可能产生与给定对象相关的空间的自映射的信息。在这里,我们解决了gonalves和Wong在2000年代中期提出的一个问题:我们构造了一个严格增加维数且其所有自同伦等价都具有消失尼尔森数的紧连通的无穷级数(非零流形)。为此,我们建立了一个显著的(无限)可溶线性群族具有所谓性质R∞$R_\infty$的充分条件。特别是,我们推广或补充了Dekimpe, gonalves, Kochloukova, Nasybullov, Taback, Tertooy, Van den Bussche和Wong的早期结果,表明许多可解S $S$ -算术群具有R∞$R_\infty$,并提出了这个方向的猜想。
Reidemeister numbers of group automorphisms encode the number of twisted conjugacy classes of groups and might yield information about self-maps of spaces related to the given objects. Here, we address a question posed by Gonçalves and Wong in the mid-2000s: we construct an infinite series of compact connected solvmanifolds (that are notnilmanifolds) of strictly increasing dimensions and all of whose self-homotopy equivalences have vanishing Nielsen number. To this end, we establish a sufficient condition for a prominent (infinite) family of soluble linear groups to have the so-called property . In particular, we generalize or complement earlier results due to Dekimpe, Gonçalves, Kochloukova, Nasybullov, Taback, Tertooy, Van den Bussche, and Wong, showing that many soluble -arithmetic groups have and suggesting a conjecture in this direction.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index