可溶算术群中的扭共轭

IF 0.8 3区 数学 Q2 MATHEMATICS
Paula M. Lins de Araujo, Yuri Santos Rego
{"title":"可溶算术群中的扭共轭","authors":"Paula M. Lins de Araujo,&nbsp;Yuri Santos Rego","doi":"10.1002/mana.202300448","DOIUrl":null,"url":null,"abstract":"<p>Reidemeister numbers of group automorphisms encode the number of twisted conjugacy classes of groups and might yield information about self-maps of spaces related to the given objects. Here, we address a question posed by Gonçalves and Wong in the mid-2000s: we construct an infinite series of compact connected solvmanifolds (that are <i>not</i> <i>nil</i>manifolds) of strictly increasing dimensions and all of whose self-homotopy equivalences have vanishing Nielsen number. To this end, we establish a sufficient condition for a prominent (infinite) family of soluble linear groups to have the so-called property <span></span><math>\n <semantics>\n <msub>\n <mi>R</mi>\n <mi>∞</mi>\n </msub>\n <annotation>$R_\\infty$</annotation>\n </semantics></math>. In particular, we generalize or complement earlier results due to Dekimpe, Gonçalves, Kochloukova, Nasybullov, Taback, Tertooy, Van den Bussche, and Wong, showing that many soluble <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>-arithmetic groups have <span></span><math>\n <semantics>\n <msub>\n <mi>R</mi>\n <mi>∞</mi>\n </msub>\n <annotation>$R_\\infty$</annotation>\n </semantics></math> and suggesting a conjecture in this direction.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 3","pages":"763-793"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300448","citationCount":"0","resultStr":"{\"title\":\"Twisted conjugacy in soluble arithmetic groups\",\"authors\":\"Paula M. Lins de Araujo,&nbsp;Yuri Santos Rego\",\"doi\":\"10.1002/mana.202300448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reidemeister numbers of group automorphisms encode the number of twisted conjugacy classes of groups and might yield information about self-maps of spaces related to the given objects. Here, we address a question posed by Gonçalves and Wong in the mid-2000s: we construct an infinite series of compact connected solvmanifolds (that are <i>not</i> <i>nil</i>manifolds) of strictly increasing dimensions and all of whose self-homotopy equivalences have vanishing Nielsen number. To this end, we establish a sufficient condition for a prominent (infinite) family of soluble linear groups to have the so-called property <span></span><math>\\n <semantics>\\n <msub>\\n <mi>R</mi>\\n <mi>∞</mi>\\n </msub>\\n <annotation>$R_\\\\infty$</annotation>\\n </semantics></math>. In particular, we generalize or complement earlier results due to Dekimpe, Gonçalves, Kochloukova, Nasybullov, Taback, Tertooy, Van den Bussche, and Wong, showing that many soluble <span></span><math>\\n <semantics>\\n <mi>S</mi>\\n <annotation>$S$</annotation>\\n </semantics></math>-arithmetic groups have <span></span><math>\\n <semantics>\\n <msub>\\n <mi>R</mi>\\n <mi>∞</mi>\\n </msub>\\n <annotation>$R_\\\\infty$</annotation>\\n </semantics></math> and suggesting a conjecture in this direction.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 3\",\"pages\":\"763-793\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300448\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300448\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300448","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

群自同构的Reidemeister数编码了群的扭曲共轭类的数量,并可能产生与给定对象相关的空间的自映射的信息。在这里,我们解决了gonalves和Wong在2000年代中期提出的一个问题:我们构造了一个严格增加维数且其所有自同伦等价都具有消失尼尔森数的紧连通的无穷级数(非零流形)。为此,我们建立了一个显著的(无限)可溶线性群族具有所谓性质R∞$R_\infty$的充分条件。特别是,我们推广或补充了Dekimpe, gonalves, Kochloukova, Nasybullov, Taback, Tertooy, Van den Bussche和Wong的早期结果,表明许多可解S $S$ -算术群具有R∞$R_\infty$,并提出了这个方向的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Twisted conjugacy in soluble arithmetic groups

Twisted conjugacy in soluble arithmetic groups

Reidemeister numbers of group automorphisms encode the number of twisted conjugacy classes of groups and might yield information about self-maps of spaces related to the given objects. Here, we address a question posed by Gonçalves and Wong in the mid-2000s: we construct an infinite series of compact connected solvmanifolds (that are not nilmanifolds) of strictly increasing dimensions and all of whose self-homotopy equivalences have vanishing Nielsen number. To this end, we establish a sufficient condition for a prominent (infinite) family of soluble linear groups to have the so-called property  R $R_\infty$ . In particular, we generalize or complement earlier results due to Dekimpe, Gonçalves, Kochloukova, Nasybullov, Taback, Tertooy, Van den Bussche, and Wong, showing that many soluble S $S$ -arithmetic groups have  R $R_\infty$ and suggesting a conjecture in this direction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信