多项式和全态函数的熵数和箱维数

IF 0.8 3区 数学 Q2 MATHEMATICS
Daniel Carando, Carlos D'Andrea, Leodan A. Torres, Pablo Turco
{"title":"多项式和全态函数的熵数和箱维数","authors":"Daniel Carando,&nbsp;Carlos D'Andrea,&nbsp;Leodan A. Torres,&nbsp;Pablo Turco","doi":"10.1002/mana.202400042","DOIUrl":null,"url":null,"abstract":"<p>We study entropy numbers and box dimension of (the image of) homogeneous polynomials and holomorphic functions between Banach spaces. First, we see that entropy numbers and box dimensions of subsets of Banach spaces are related. We show that the box dimension of the image of a ball under a homogeneous polynomial is finite if and only if it spans a finite-dimensional subspace, but this is not true for holomorphic functions. Furthermore, we relate the entropy numbers of a holomorphic function to those of the polynomials of its Taylor series expansion. As a consequence, if the box dimension of the image of a ball by a holomorphic function <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> is finite, then the entropy numbers of the polynomials in the Taylor series expansion of <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> at any point of the ball belong to <span></span><math>\n <semantics>\n <msub>\n <mi>ℓ</mi>\n <mi>p</mi>\n </msub>\n <annotation>$\\ell _p$</annotation>\n </semantics></math> for every <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>&gt;</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$p&gt;1$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"567-580"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy numbers and box dimension of polynomials and holomorphic functions\",\"authors\":\"Daniel Carando,&nbsp;Carlos D'Andrea,&nbsp;Leodan A. Torres,&nbsp;Pablo Turco\",\"doi\":\"10.1002/mana.202400042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study entropy numbers and box dimension of (the image of) homogeneous polynomials and holomorphic functions between Banach spaces. First, we see that entropy numbers and box dimensions of subsets of Banach spaces are related. We show that the box dimension of the image of a ball under a homogeneous polynomial is finite if and only if it spans a finite-dimensional subspace, but this is not true for holomorphic functions. Furthermore, we relate the entropy numbers of a holomorphic function to those of the polynomials of its Taylor series expansion. As a consequence, if the box dimension of the image of a ball by a holomorphic function <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> is finite, then the entropy numbers of the polynomials in the Taylor series expansion of <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> at any point of the ball belong to <span></span><math>\\n <semantics>\\n <msub>\\n <mi>ℓ</mi>\\n <mi>p</mi>\\n </msub>\\n <annotation>$\\\\ell _p$</annotation>\\n </semantics></math> for every <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>&gt;</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$p&gt;1$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 2\",\"pages\":\"567-580\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400042\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400042","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy numbers and box dimension of polynomials and holomorphic functions

We study entropy numbers and box dimension of (the image of) homogeneous polynomials and holomorphic functions between Banach spaces. First, we see that entropy numbers and box dimensions of subsets of Banach spaces are related. We show that the box dimension of the image of a ball under a homogeneous polynomial is finite if and only if it spans a finite-dimensional subspace, but this is not true for holomorphic functions. Furthermore, we relate the entropy numbers of a holomorphic function to those of the polynomials of its Taylor series expansion. As a consequence, if the box dimension of the image of a ball by a holomorphic function f $f$ is finite, then the entropy numbers of the polynomials in the Taylor series expansion of f $f$ at any point of the ball belong to p $\ell _p$ for every p > 1 $p>1$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信