Daniel Carando, Carlos D'Andrea, Leodan A. Torres, Pablo Turco
{"title":"多项式和全态函数的熵数和箱维数","authors":"Daniel Carando, Carlos D'Andrea, Leodan A. Torres, Pablo Turco","doi":"10.1002/mana.202400042","DOIUrl":null,"url":null,"abstract":"<p>We study entropy numbers and box dimension of (the image of) homogeneous polynomials and holomorphic functions between Banach spaces. First, we see that entropy numbers and box dimensions of subsets of Banach spaces are related. We show that the box dimension of the image of a ball under a homogeneous polynomial is finite if and only if it spans a finite-dimensional subspace, but this is not true for holomorphic functions. Furthermore, we relate the entropy numbers of a holomorphic function to those of the polynomials of its Taylor series expansion. As a consequence, if the box dimension of the image of a ball by a holomorphic function <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> is finite, then the entropy numbers of the polynomials in the Taylor series expansion of <span></span><math>\n <semantics>\n <mi>f</mi>\n <annotation>$f$</annotation>\n </semantics></math> at any point of the ball belong to <span></span><math>\n <semantics>\n <msub>\n <mi>ℓ</mi>\n <mi>p</mi>\n </msub>\n <annotation>$\\ell _p$</annotation>\n </semantics></math> for every <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>></mo>\n <mn>1</mn>\n </mrow>\n <annotation>$p>1$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"567-580"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entropy numbers and box dimension of polynomials and holomorphic functions\",\"authors\":\"Daniel Carando, Carlos D'Andrea, Leodan A. Torres, Pablo Turco\",\"doi\":\"10.1002/mana.202400042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study entropy numbers and box dimension of (the image of) homogeneous polynomials and holomorphic functions between Banach spaces. First, we see that entropy numbers and box dimensions of subsets of Banach spaces are related. We show that the box dimension of the image of a ball under a homogeneous polynomial is finite if and only if it spans a finite-dimensional subspace, but this is not true for holomorphic functions. Furthermore, we relate the entropy numbers of a holomorphic function to those of the polynomials of its Taylor series expansion. As a consequence, if the box dimension of the image of a ball by a holomorphic function <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> is finite, then the entropy numbers of the polynomials in the Taylor series expansion of <span></span><math>\\n <semantics>\\n <mi>f</mi>\\n <annotation>$f$</annotation>\\n </semantics></math> at any point of the ball belong to <span></span><math>\\n <semantics>\\n <msub>\\n <mi>ℓ</mi>\\n <mi>p</mi>\\n </msub>\\n <annotation>$\\\\ell _p$</annotation>\\n </semantics></math> for every <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>></mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$p>1$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 2\",\"pages\":\"567-580\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400042\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400042","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Entropy numbers and box dimension of polynomials and holomorphic functions
We study entropy numbers and box dimension of (the image of) homogeneous polynomials and holomorphic functions between Banach spaces. First, we see that entropy numbers and box dimensions of subsets of Banach spaces are related. We show that the box dimension of the image of a ball under a homogeneous polynomial is finite if and only if it spans a finite-dimensional subspace, but this is not true for holomorphic functions. Furthermore, we relate the entropy numbers of a holomorphic function to those of the polynomials of its Taylor series expansion. As a consequence, if the box dimension of the image of a ball by a holomorphic function is finite, then the entropy numbers of the polynomials in the Taylor series expansion of at any point of the ball belong to for every .
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index