Chiara Boiti, David Jornet, Alessandro Oliaro, Gerhard Schindl
{"title":"Construction of the log-convex minorant of a sequence \n \n \n \n {\n \n M\n α\n \n }\n \n \n α\n ∈\n \n N\n 0\n d\n \n \n \n $\\lbrace M_\\alpha \\rbrace _{\\alpha \\in \\mathbb {N}_0^d}$","authors":"Chiara Boiti, David Jornet, Alessandro Oliaro, Gerhard Schindl","doi":"10.1002/mana.202400135","DOIUrl":null,"url":null,"abstract":"<p>We give a simple construction of the log-convex minorant of a sequence <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>M</mi>\n <mi>α</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>α</mi>\n <mo>∈</mo>\n <msubsup>\n <mi>N</mi>\n <mn>0</mn>\n <mi>d</mi>\n </msubsup>\n </mrow>\n </msub>\n <annotation>$\\lbrace M_\\alpha \\rbrace _{\\alpha \\in \\mathbb {N}_0^d}$</annotation>\n </semantics></math> and consequently extend to the <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-dimensional case the well-known formula that relates a log-convex sequence <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>M</mi>\n <mi>p</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>p</mi>\n <mo>∈</mo>\n <msub>\n <mi>N</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n </msub>\n <annotation>$\\lbrace M_p\\rbrace _{p\\in \\mathbb {N}_0}$</annotation>\n </semantics></math> to its associated function <span></span><math>\n <semantics>\n <msub>\n <mi>ω</mi>\n <mi>M</mi>\n </msub>\n <annotation>$\\omega _M$</annotation>\n </semantics></math>, that is, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mi>p</mi>\n </msub>\n <mo>=</mo>\n <msub>\n <mo>sup</mo>\n <mrow>\n <mi>t</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n </msub>\n <msup>\n <mi>t</mi>\n <mi>p</mi>\n </msup>\n <mi>exp</mi>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <msub>\n <mi>ω</mi>\n <mi>M</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$M_p=\\sup _{t>0}t^p\\exp (-\\omega _M(t))$</annotation>\n </semantics></math>. We show that in the more dimensional anisotropic case the classical log-convex condition <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>M</mi>\n <mi>α</mi>\n <mn>2</mn>\n </msubsup>\n <mo>≤</mo>\n <msub>\n <mi>M</mi>\n <mrow>\n <mi>α</mi>\n <mo>−</mo>\n <msub>\n <mi>e</mi>\n <mi>j</mi>\n </msub>\n </mrow>\n </msub>\n <msub>\n <mi>M</mi>\n <mrow>\n <mi>α</mi>\n <mo>+</mo>\n <msub>\n <mi>e</mi>\n <mi>j</mi>\n </msub>\n </mrow>\n </msub>\n </mrow>\n <annotation>$M_\\alpha ^2\\le M_{\\alpha -e_j}M_{\\alpha +e_j}$</annotation>\n </semantics></math> is not sufficient: convexity as a function of more variables is needed (not only coordinate-wise). We finally obtain some applications to the inclusion of spaces of rapidly decreasing ultradifferentiable functions in the matrix weighted setting.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"456-477"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400135","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400135","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We give a simple construction of the log-convex minorant of a sequence and consequently extend to the -dimensional case the well-known formula that relates a log-convex sequence to its associated function , that is, . We show that in the more dimensional anisotropic case the classical log-convex condition is not sufficient: convexity as a function of more variables is needed (not only coordinate-wise). We finally obtain some applications to the inclusion of spaces of rapidly decreasing ultradifferentiable functions in the matrix weighted setting.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index