序列{M α} α∈n0 d $\lbrace M_\alpha \rbrace _{\alpha \in \mathbb {N}_0^d}$的对数凸次幂的构造

IF 0.8 3区 数学 Q2 MATHEMATICS
Chiara Boiti, David Jornet, Alessandro Oliaro, Gerhard Schindl
{"title":"序列{M α} α∈n0 d $\\lbrace M_\\alpha \\rbrace _{\\alpha \\in \\mathbb {N}_0^d}$的对数凸次幂的构造","authors":"Chiara Boiti,&nbsp;David Jornet,&nbsp;Alessandro Oliaro,&nbsp;Gerhard Schindl","doi":"10.1002/mana.202400135","DOIUrl":null,"url":null,"abstract":"<p>We give a simple construction of the log-convex minorant of a sequence <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>M</mi>\n <mi>α</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>α</mi>\n <mo>∈</mo>\n <msubsup>\n <mi>N</mi>\n <mn>0</mn>\n <mi>d</mi>\n </msubsup>\n </mrow>\n </msub>\n <annotation>$\\lbrace M_\\alpha \\rbrace _{\\alpha \\in \\mathbb {N}_0^d}$</annotation>\n </semantics></math> and consequently extend to the <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-dimensional case the well-known formula that relates a log-convex sequence <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>M</mi>\n <mi>p</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>p</mi>\n <mo>∈</mo>\n <msub>\n <mi>N</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n </msub>\n <annotation>$\\lbrace M_p\\rbrace _{p\\in \\mathbb {N}_0}$</annotation>\n </semantics></math> to its associated function <span></span><math>\n <semantics>\n <msub>\n <mi>ω</mi>\n <mi>M</mi>\n </msub>\n <annotation>$\\omega _M$</annotation>\n </semantics></math>, that is, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mi>p</mi>\n </msub>\n <mo>=</mo>\n <msub>\n <mo>sup</mo>\n <mrow>\n <mi>t</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n </msub>\n <msup>\n <mi>t</mi>\n <mi>p</mi>\n </msup>\n <mi>exp</mi>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <msub>\n <mi>ω</mi>\n <mi>M</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$M_p=\\sup _{t&gt;0}t^p\\exp (-\\omega _M(t))$</annotation>\n </semantics></math>. We show that in the more dimensional anisotropic case the classical log-convex condition <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>M</mi>\n <mi>α</mi>\n <mn>2</mn>\n </msubsup>\n <mo>≤</mo>\n <msub>\n <mi>M</mi>\n <mrow>\n <mi>α</mi>\n <mo>−</mo>\n <msub>\n <mi>e</mi>\n <mi>j</mi>\n </msub>\n </mrow>\n </msub>\n <msub>\n <mi>M</mi>\n <mrow>\n <mi>α</mi>\n <mo>+</mo>\n <msub>\n <mi>e</mi>\n <mi>j</mi>\n </msub>\n </mrow>\n </msub>\n </mrow>\n <annotation>$M_\\alpha ^2\\le M_{\\alpha -e_j}M_{\\alpha +e_j}$</annotation>\n </semantics></math> is not sufficient: convexity as a function of more variables is needed (not only coordinate-wise). We finally obtain some applications to the inclusion of spaces of rapidly decreasing ultradifferentiable functions in the matrix weighted setting.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"456-477"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400135","citationCount":"0","resultStr":"{\"title\":\"Construction of the log-convex minorant of a sequence \\n \\n \\n \\n {\\n \\n M\\n α\\n \\n }\\n \\n \\n α\\n ∈\\n \\n N\\n 0\\n d\\n \\n \\n \\n $\\\\lbrace M_\\\\alpha \\\\rbrace _{\\\\alpha \\\\in \\\\mathbb {N}_0^d}$\",\"authors\":\"Chiara Boiti,&nbsp;David Jornet,&nbsp;Alessandro Oliaro,&nbsp;Gerhard Schindl\",\"doi\":\"10.1002/mana.202400135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give a simple construction of the log-convex minorant of a sequence <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mo>{</mo>\\n <msub>\\n <mi>M</mi>\\n <mi>α</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <mrow>\\n <mi>α</mi>\\n <mo>∈</mo>\\n <msubsup>\\n <mi>N</mi>\\n <mn>0</mn>\\n <mi>d</mi>\\n </msubsup>\\n </mrow>\\n </msub>\\n <annotation>$\\\\lbrace M_\\\\alpha \\\\rbrace _{\\\\alpha \\\\in \\\\mathbb {N}_0^d}$</annotation>\\n </semantics></math> and consequently extend to the <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math>-dimensional case the well-known formula that relates a log-convex sequence <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mo>{</mo>\\n <msub>\\n <mi>M</mi>\\n <mi>p</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n <mo>∈</mo>\\n <msub>\\n <mi>N</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n </msub>\\n <annotation>$\\\\lbrace M_p\\\\rbrace _{p\\\\in \\\\mathbb {N}_0}$</annotation>\\n </semantics></math> to its associated function <span></span><math>\\n <semantics>\\n <msub>\\n <mi>ω</mi>\\n <mi>M</mi>\\n </msub>\\n <annotation>$\\\\omega _M$</annotation>\\n </semantics></math>, that is, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>M</mi>\\n <mi>p</mi>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mo>sup</mo>\\n <mrow>\\n <mi>t</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <msup>\\n <mi>t</mi>\\n <mi>p</mi>\\n </msup>\\n <mi>exp</mi>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <msub>\\n <mi>ω</mi>\\n <mi>M</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$M_p=\\\\sup _{t&gt;0}t^p\\\\exp (-\\\\omega _M(t))$</annotation>\\n </semantics></math>. We show that in the more dimensional anisotropic case the classical log-convex condition <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>M</mi>\\n <mi>α</mi>\\n <mn>2</mn>\\n </msubsup>\\n <mo>≤</mo>\\n <msub>\\n <mi>M</mi>\\n <mrow>\\n <mi>α</mi>\\n <mo>−</mo>\\n <msub>\\n <mi>e</mi>\\n <mi>j</mi>\\n </msub>\\n </mrow>\\n </msub>\\n <msub>\\n <mi>M</mi>\\n <mrow>\\n <mi>α</mi>\\n <mo>+</mo>\\n <msub>\\n <mi>e</mi>\\n <mi>j</mi>\\n </msub>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$M_\\\\alpha ^2\\\\le M_{\\\\alpha -e_j}M_{\\\\alpha +e_j}$</annotation>\\n </semantics></math> is not sufficient: convexity as a function of more variables is needed (not only coordinate-wise). We finally obtain some applications to the inclusion of spaces of rapidly decreasing ultradifferentiable functions in the matrix weighted setting.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 2\",\"pages\":\"456-477\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400135\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400135\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400135","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给出序列{M} α α∈n0 d的对数凸次量的一个简单构造$\lbrace M_\alpha \rbrace _{\alpha \in \mathbb {N}_0^d}$并因此推广到d $d$维的情况下,这个众所周知的公式是关于一个对数凸序列的p∈n0 {}$\lbrace M_p\rbrace _{p\in \mathbb {N}_0}$到其关联函数ω M $\omega _M$,即M p = sup t &gt;0 t p exp(−ω M (t))$M_p=\sup _{t>0}t^p\exp (-\omega _M(t))$。我们证明了在高维各向异性情况下经典对数凸条件M α 2≤M α−e jM α + e j $M_\alpha ^2\le M_{\alpha -e_j}M_{\alpha +e_j}$不充分:作为更多变量的函数的凸性是必需的(不仅仅是坐标方面的)。最后,我们得到了在矩阵加权集合中包含速降超可微函数空间的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Construction of the log-convex minorant of a sequence { M α } α ∈ N 0 d $\lbrace M_\alpha \rbrace _{\alpha \in \mathbb {N}_0^d}$

We give a simple construction of the log-convex minorant of a sequence { M α } α N 0 d $\lbrace M_\alpha \rbrace _{\alpha \in \mathbb {N}_0^d}$ and consequently extend to the d $d$ -dimensional case the well-known formula that relates a log-convex sequence { M p } p N 0 $\lbrace M_p\rbrace _{p\in \mathbb {N}_0}$ to its associated function ω M $\omega _M$ , that is, M p = sup t > 0 t p exp ( ω M ( t ) ) $M_p=\sup _{t>0}t^p\exp (-\omega _M(t))$ . We show that in the more dimensional anisotropic case the classical log-convex condition M α 2 M α e j M α + e j $M_\alpha ^2\le M_{\alpha -e_j}M_{\alpha +e_j}$ is not sufficient: convexity as a function of more variables is needed (not only coordinate-wise). We finally obtain some applications to the inclusion of spaces of rapidly decreasing ultradifferentiable functions in the matrix weighted setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信