下载PDF
{"title":"序列{M α} α∈n0 d $\\lbrace M_\\alpha \\rbrace _{\\alpha \\in \\mathbb {N}_0^d}$的对数凸次幂的构造","authors":"Chiara Boiti, David Jornet, Alessandro Oliaro, Gerhard Schindl","doi":"10.1002/mana.202400135","DOIUrl":null,"url":null,"abstract":"<p>We give a simple construction of the log-convex minorant of a sequence <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>M</mi>\n <mi>α</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>α</mi>\n <mo>∈</mo>\n <msubsup>\n <mi>N</mi>\n <mn>0</mn>\n <mi>d</mi>\n </msubsup>\n </mrow>\n </msub>\n <annotation>$\\lbrace M_\\alpha \\rbrace _{\\alpha \\in \\mathbb {N}_0^d}$</annotation>\n </semantics></math> and consequently extend to the <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-dimensional case the well-known formula that relates a log-convex sequence <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>{</mo>\n <msub>\n <mi>M</mi>\n <mi>p</mi>\n </msub>\n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>p</mi>\n <mo>∈</mo>\n <msub>\n <mi>N</mi>\n <mn>0</mn>\n </msub>\n </mrow>\n </msub>\n <annotation>$\\lbrace M_p\\rbrace _{p\\in \\mathbb {N}_0}$</annotation>\n </semantics></math> to its associated function <span></span><math>\n <semantics>\n <msub>\n <mi>ω</mi>\n <mi>M</mi>\n </msub>\n <annotation>$\\omega _M$</annotation>\n </semantics></math>, that is, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>M</mi>\n <mi>p</mi>\n </msub>\n <mo>=</mo>\n <msub>\n <mo>sup</mo>\n <mrow>\n <mi>t</mi>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n </msub>\n <msup>\n <mi>t</mi>\n <mi>p</mi>\n </msup>\n <mi>exp</mi>\n <mrow>\n <mo>(</mo>\n <mo>−</mo>\n <msub>\n <mi>ω</mi>\n <mi>M</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$M_p=\\sup _{t>0}t^p\\exp (-\\omega _M(t))$</annotation>\n </semantics></math>. We show that in the more dimensional anisotropic case the classical log-convex condition <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>M</mi>\n <mi>α</mi>\n <mn>2</mn>\n </msubsup>\n <mo>≤</mo>\n <msub>\n <mi>M</mi>\n <mrow>\n <mi>α</mi>\n <mo>−</mo>\n <msub>\n <mi>e</mi>\n <mi>j</mi>\n </msub>\n </mrow>\n </msub>\n <msub>\n <mi>M</mi>\n <mrow>\n <mi>α</mi>\n <mo>+</mo>\n <msub>\n <mi>e</mi>\n <mi>j</mi>\n </msub>\n </mrow>\n </msub>\n </mrow>\n <annotation>$M_\\alpha ^2\\le M_{\\alpha -e_j}M_{\\alpha +e_j}$</annotation>\n </semantics></math> is not sufficient: convexity as a function of more variables is needed (not only coordinate-wise). We finally obtain some applications to the inclusion of spaces of rapidly decreasing ultradifferentiable functions in the matrix weighted setting.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"456-477"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400135","citationCount":"0","resultStr":"{\"title\":\"Construction of the log-convex minorant of a sequence \\n \\n \\n \\n {\\n \\n M\\n α\\n \\n }\\n \\n \\n α\\n ∈\\n \\n N\\n 0\\n d\\n \\n \\n \\n $\\\\lbrace M_\\\\alpha \\\\rbrace _{\\\\alpha \\\\in \\\\mathbb {N}_0^d}$\",\"authors\":\"Chiara Boiti, David Jornet, Alessandro Oliaro, Gerhard Schindl\",\"doi\":\"10.1002/mana.202400135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give a simple construction of the log-convex minorant of a sequence <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mo>{</mo>\\n <msub>\\n <mi>M</mi>\\n <mi>α</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <mrow>\\n <mi>α</mi>\\n <mo>∈</mo>\\n <msubsup>\\n <mi>N</mi>\\n <mn>0</mn>\\n <mi>d</mi>\\n </msubsup>\\n </mrow>\\n </msub>\\n <annotation>$\\\\lbrace M_\\\\alpha \\\\rbrace _{\\\\alpha \\\\in \\\\mathbb {N}_0^d}$</annotation>\\n </semantics></math> and consequently extend to the <span></span><math>\\n <semantics>\\n <mi>d</mi>\\n <annotation>$d$</annotation>\\n </semantics></math>-dimensional case the well-known formula that relates a log-convex sequence <span></span><math>\\n <semantics>\\n <msub>\\n <mrow>\\n <mo>{</mo>\\n <msub>\\n <mi>M</mi>\\n <mi>p</mi>\\n </msub>\\n <mo>}</mo>\\n </mrow>\\n <mrow>\\n <mi>p</mi>\\n <mo>∈</mo>\\n <msub>\\n <mi>N</mi>\\n <mn>0</mn>\\n </msub>\\n </mrow>\\n </msub>\\n <annotation>$\\\\lbrace M_p\\\\rbrace _{p\\\\in \\\\mathbb {N}_0}$</annotation>\\n </semantics></math> to its associated function <span></span><math>\\n <semantics>\\n <msub>\\n <mi>ω</mi>\\n <mi>M</mi>\\n </msub>\\n <annotation>$\\\\omega _M$</annotation>\\n </semantics></math>, that is, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>M</mi>\\n <mi>p</mi>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mo>sup</mo>\\n <mrow>\\n <mi>t</mi>\\n <mo>></mo>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <msup>\\n <mi>t</mi>\\n <mi>p</mi>\\n </msup>\\n <mi>exp</mi>\\n <mrow>\\n <mo>(</mo>\\n <mo>−</mo>\\n <msub>\\n <mi>ω</mi>\\n <mi>M</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$M_p=\\\\sup _{t>0}t^p\\\\exp (-\\\\omega _M(t))$</annotation>\\n </semantics></math>. We show that in the more dimensional anisotropic case the classical log-convex condition <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>M</mi>\\n <mi>α</mi>\\n <mn>2</mn>\\n </msubsup>\\n <mo>≤</mo>\\n <msub>\\n <mi>M</mi>\\n <mrow>\\n <mi>α</mi>\\n <mo>−</mo>\\n <msub>\\n <mi>e</mi>\\n <mi>j</mi>\\n </msub>\\n </mrow>\\n </msub>\\n <msub>\\n <mi>M</mi>\\n <mrow>\\n <mi>α</mi>\\n <mo>+</mo>\\n <msub>\\n <mi>e</mi>\\n <mi>j</mi>\\n </msub>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$M_\\\\alpha ^2\\\\le M_{\\\\alpha -e_j}M_{\\\\alpha +e_j}$</annotation>\\n </semantics></math> is not sufficient: convexity as a function of more variables is needed (not only coordinate-wise). We finally obtain some applications to the inclusion of spaces of rapidly decreasing ultradifferentiable functions in the matrix weighted setting.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 2\",\"pages\":\"456-477\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400135\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400135\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400135","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用