论 C P 2 $\mathbb {C}P^{2}$ 和 C H 2 $\mathbb {C}H^{2}$ 中的非霍普夫里奇伪对称超曲面

IF 0.8 3区 数学 Q2 MATHEMATICS
Qianshun Cui, Zejun Hu
{"title":"论 C P 2 $\\mathbb {C}P^{2}$ 和 C H 2 $\\mathbb {C}H^{2}$ 中的非霍普夫里奇伪对称超曲面","authors":"Qianshun Cui,&nbsp;Zejun Hu","doi":"10.1002/mana.202300463","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study an open problem raised by Cecil and Ryan [<i>Geometry of Hypersurfaces</i>, Springer Monographs in Mathematics, p. 531] which asked whether there exist non-Hopf Ricci-pseudosymmetric hypersurfaces in <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {C}P^{2}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {C}H^{2}$</annotation>\n </semantics></math>. As our main results, we first prove the nonexistence of non-Hopf Ricci-pseudosymmetric hypersurfaces of the constant type in <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {C}H^{2}$</annotation>\n </semantics></math>. Then, we prove the existence of non-Hopf Ricci-pseudosymmetric hypersurfaces of the constant type in <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {C}P^{2}$</annotation>\n </semantics></math>. Finally, applying the preceding results and sharpening Theorem 4.1 of Wang and Zhang [<i>J. Geom. Phys</i>. <b>181</b> (2022), 104648], we prove the nonexistence of non-Hopf weakly Einstein hypersurfaces with constant norm of Riemannian curvature tensor in both <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {C}P^{2}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {C}H^{2}$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"527-547"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On non-Hopf Ricci-pseudosymmetric hypersurfaces in \\n \\n \\n C\\n \\n P\\n 2\\n \\n \\n $\\\\mathbb {C}P^{2}$\\n and \\n \\n \\n C\\n \\n H\\n 2\\n \\n \\n $\\\\mathbb {C}H^{2}$\",\"authors\":\"Qianshun Cui,&nbsp;Zejun Hu\",\"doi\":\"10.1002/mana.202300463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study an open problem raised by Cecil and Ryan [<i>Geometry of Hypersurfaces</i>, Springer Monographs in Mathematics, p. 531] which asked whether there exist non-Hopf Ricci-pseudosymmetric hypersurfaces in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <msup>\\n <mi>P</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {C}P^{2}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {C}H^{2}$</annotation>\\n </semantics></math>. As our main results, we first prove the nonexistence of non-Hopf Ricci-pseudosymmetric hypersurfaces of the constant type in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {C}H^{2}$</annotation>\\n </semantics></math>. Then, we prove the existence of non-Hopf Ricci-pseudosymmetric hypersurfaces of the constant type in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <msup>\\n <mi>P</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {C}P^{2}$</annotation>\\n </semantics></math>. Finally, applying the preceding results and sharpening Theorem 4.1 of Wang and Zhang [<i>J. Geom. Phys</i>. <b>181</b> (2022), 104648], we prove the nonexistence of non-Hopf weakly Einstein hypersurfaces with constant norm of Riemannian curvature tensor in both <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <msup>\\n <mi>P</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {C}P^{2}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {C}H^{2}$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 2\",\"pages\":\"527-547\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300463\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300463","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了Cecil和Ryan提出的一个开放问题[几何的超曲面,b施普林格数学专著,[p. 531]讨论了在C p 2 $\mathbb {C} p ^{2}$和C H 2 $\mathbb {C}H^{2}$中是否存在非hopf ricci -伪对称超曲面。作为我们的主要成果,我们首先证明了C H 2 $\mathbb {C}H^{2}$中常数型非hopf ricci -伪对称超曲面的不存在性。然后,我们证明了C p2 $\mathbb {C}P^{2}$中常数型非hopf ricci -伪对称超曲面的存在性。最后,应用上述结果和Wang and Zhang的锐化定理4.1 [J]。几何学。[j] .物理学报,2016,33(5),442 - 446。证明了C p2 $\mathbb {C}P^{2}$和C h2 $\mathbb {C}H^{2}$中具有常范数黎曼曲率张量的非hopf弱爱因斯坦超曲面的不存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On non-Hopf Ricci-pseudosymmetric hypersurfaces in C P 2 $\mathbb {C}P^{2}$ and C H 2 $\mathbb {C}H^{2}$

In this paper, we study an open problem raised by Cecil and Ryan [Geometry of Hypersurfaces, Springer Monographs in Mathematics, p. 531] which asked whether there exist non-Hopf Ricci-pseudosymmetric hypersurfaces in C P 2 $\mathbb {C}P^{2}$ and C H 2 $\mathbb {C}H^{2}$ . As our main results, we first prove the nonexistence of non-Hopf Ricci-pseudosymmetric hypersurfaces of the constant type in C H 2 $\mathbb {C}H^{2}$ . Then, we prove the existence of non-Hopf Ricci-pseudosymmetric hypersurfaces of the constant type in C P 2 $\mathbb {C}P^{2}$ . Finally, applying the preceding results and sharpening Theorem 4.1 of Wang and Zhang [J. Geom. Phys. 181 (2022), 104648], we prove the nonexistence of non-Hopf weakly Einstein hypersurfaces with constant norm of Riemannian curvature tensor in both C P 2 $\mathbb {C}P^{2}$ and C H 2 $\mathbb {C}H^{2}$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信