{"title":"论 C P 2 $\\mathbb {C}P^{2}$ 和 C H 2 $\\mathbb {C}H^{2}$ 中的非霍普夫里奇伪对称超曲面","authors":"Qianshun Cui, Zejun Hu","doi":"10.1002/mana.202300463","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study an open problem raised by Cecil and Ryan [<i>Geometry of Hypersurfaces</i>, Springer Monographs in Mathematics, p. 531] which asked whether there exist non-Hopf Ricci-pseudosymmetric hypersurfaces in <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {C}P^{2}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {C}H^{2}$</annotation>\n </semantics></math>. As our main results, we first prove the nonexistence of non-Hopf Ricci-pseudosymmetric hypersurfaces of the constant type in <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {C}H^{2}$</annotation>\n </semantics></math>. Then, we prove the existence of non-Hopf Ricci-pseudosymmetric hypersurfaces of the constant type in <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {C}P^{2}$</annotation>\n </semantics></math>. Finally, applying the preceding results and sharpening Theorem 4.1 of Wang and Zhang [<i>J. Geom. Phys</i>. <b>181</b> (2022), 104648], we prove the nonexistence of non-Hopf weakly Einstein hypersurfaces with constant norm of Riemannian curvature tensor in both <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msup>\n <mi>P</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {C}P^{2}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n <msup>\n <mi>H</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$\\mathbb {C}H^{2}$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"527-547"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On non-Hopf Ricci-pseudosymmetric hypersurfaces in \\n \\n \\n C\\n \\n P\\n 2\\n \\n \\n $\\\\mathbb {C}P^{2}$\\n and \\n \\n \\n C\\n \\n H\\n 2\\n \\n \\n $\\\\mathbb {C}H^{2}$\",\"authors\":\"Qianshun Cui, Zejun Hu\",\"doi\":\"10.1002/mana.202300463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study an open problem raised by Cecil and Ryan [<i>Geometry of Hypersurfaces</i>, Springer Monographs in Mathematics, p. 531] which asked whether there exist non-Hopf Ricci-pseudosymmetric hypersurfaces in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <msup>\\n <mi>P</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {C}P^{2}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {C}H^{2}$</annotation>\\n </semantics></math>. As our main results, we first prove the nonexistence of non-Hopf Ricci-pseudosymmetric hypersurfaces of the constant type in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {C}H^{2}$</annotation>\\n </semantics></math>. Then, we prove the existence of non-Hopf Ricci-pseudosymmetric hypersurfaces of the constant type in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <msup>\\n <mi>P</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {C}P^{2}$</annotation>\\n </semantics></math>. Finally, applying the preceding results and sharpening Theorem 4.1 of Wang and Zhang [<i>J. Geom. Phys</i>. <b>181</b> (2022), 104648], we prove the nonexistence of non-Hopf weakly Einstein hypersurfaces with constant norm of Riemannian curvature tensor in both <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <msup>\\n <mi>P</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {C}P^{2}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n <msup>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$\\\\mathbb {C}H^{2}$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 2\",\"pages\":\"527-547\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300463\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300463","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们研究了Cecil和Ryan提出的一个开放问题[几何的超曲面,b施普林格数学专著,[p. 531]讨论了在C p 2 $\mathbb {C} p ^{2}$和C H 2 $\mathbb {C}H^{2}$中是否存在非hopf ricci -伪对称超曲面。作为我们的主要成果,我们首先证明了C H 2 $\mathbb {C}H^{2}$中常数型非hopf ricci -伪对称超曲面的不存在性。然后,我们证明了C p2 $\mathbb {C}P^{2}$中常数型非hopf ricci -伪对称超曲面的存在性。最后,应用上述结果和Wang and Zhang的锐化定理4.1 [J]。几何学。[j] .物理学报,2016,33(5),442 - 446。证明了C p2 $\mathbb {C}P^{2}$和C h2 $\mathbb {C}H^{2}$中具有常范数黎曼曲率张量的非hopf弱爱因斯坦超曲面的不存在性。
On non-Hopf Ricci-pseudosymmetric hypersurfaces in
C
P
2
$\mathbb {C}P^{2}$
and
C
H
2
$\mathbb {C}H^{2}$
In this paper, we study an open problem raised by Cecil and Ryan [Geometry of Hypersurfaces, Springer Monographs in Mathematics, p. 531] which asked whether there exist non-Hopf Ricci-pseudosymmetric hypersurfaces in and . As our main results, we first prove the nonexistence of non-Hopf Ricci-pseudosymmetric hypersurfaces of the constant type in . Then, we prove the existence of non-Hopf Ricci-pseudosymmetric hypersurfaces of the constant type in . Finally, applying the preceding results and sharpening Theorem 4.1 of Wang and Zhang [J. Geom. Phys. 181 (2022), 104648], we prove the nonexistence of non-Hopf weakly Einstein hypersurfaces with constant norm of Riemannian curvature tensor in both and .
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index