Curvature of quaternionic skew-Hermitian manifolds and bundle constructions

IF 0.8 3区 数学 Q2 MATHEMATICS
Ioannis Chrysikos, Vicente Cortés, Jan Gregorovič
{"title":"Curvature of quaternionic skew-Hermitian manifolds and bundle constructions","authors":"Ioannis Chrysikos,&nbsp;Vicente Cortés,&nbsp;Jan Gregorovič","doi":"10.1002/mana.202400301","DOIUrl":null,"url":null,"abstract":"<p>This paper is devoted to a description of the second-order differential geometry of torsion-free almost quaternionic skew-Hermitian manifolds, that is, of quaternionic skew-Hermitian manifolds <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>M</mi>\n <mo>,</mo>\n <mi>Q</mi>\n <mo>,</mo>\n <mi>ω</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(M, Q, \\omega)$</annotation>\n </semantics></math>. We provide a curvature characterization of such integrable geometric structures, based on the holonomy theory of symplectic connections and we study qualitative properties of the induced Ricci tensor. Then, we proceed with bundle constructions over such a manifold <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>M</mi>\n <mo>,</mo>\n <mi>Q</mi>\n <mo>,</mo>\n <mi>ω</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(M, Q, \\omega)$</annotation>\n </semantics></math>. In particular, we prove the existence of almost hypercomplex skew-Hermitian structures on the Swann bundle over <i>M</i> and investigate their integrability.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 1","pages":"87-112"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400301","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400301","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is devoted to a description of the second-order differential geometry of torsion-free almost quaternionic skew-Hermitian manifolds, that is, of quaternionic skew-Hermitian manifolds ( M , Q , ω ) $(M, Q, \omega)$ . We provide a curvature characterization of such integrable geometric structures, based on the holonomy theory of symplectic connections and we study qualitative properties of the induced Ricci tensor. Then, we proceed with bundle constructions over such a manifold ( M , Q , ω ) $(M, Q, \omega)$ . In particular, we prove the existence of almost hypercomplex skew-Hermitian structures on the Swann bundle over M and investigate their integrability.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信