Mathematische Nachrichten最新文献

筛选
英文 中文
Interpolation of derivatives and ultradifferentiable regularity 导数插值与超可微正则性
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-12-18 DOI: 10.1002/mana.202300567
Armin Rainer, Gerhard Schindl
{"title":"Interpolation of derivatives and ultradifferentiable regularity","authors":"Armin Rainer,&nbsp;Gerhard Schindl","doi":"10.1002/mana.202300567","DOIUrl":"https://doi.org/10.1002/mana.202300567","url":null,"abstract":"<p>Interpolation inequalities for <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>C</mi>\u0000 <mi>m</mi>\u0000 </msup>\u0000 <annotation>$C^m$</annotation>\u0000 </semantics></math> functions allow to bound derivatives of intermediate order <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>0</mn>\u0000 <mo>&lt;</mo>\u0000 <mi>j</mi>\u0000 <mo>&lt;</mo>\u0000 <mi>m</mi>\u0000 </mrow>\u0000 <annotation>$0 &lt; j&lt;m$</annotation>\u0000 </semantics></math> by bounds for the derivatives of order 0 and <span></span><math>\u0000 <semantics>\u0000 <mi>m</mi>\u0000 <annotation>$m$</annotation>\u0000 </semantics></math>. We review various interpolation inequalities for <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mi>p</mi>\u0000 </msup>\u0000 <annotation>$L^p$</annotation>\u0000 </semantics></math>-norms (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>≤</mo>\u0000 <mi>p</mi>\u0000 <mo>≤</mo>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 <annotation>$1 le p le infty$</annotation>\u0000 </semantics></math>) in arbitrary finite dimensions. They allow us to study ultradifferentiable regularity by lacunary estimates in a comprehensive way, striving for minimal assumptions on the weights.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"617-635"},"PeriodicalIF":0.8,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300567","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143396828","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The R ∞ $R_infty$ -property and commensurability for nilpotent groups 幂零群的R∞$R_infty$ -性质和可通约性
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-12-14 DOI: 10.1002/mana.202400154
Maarten Lathouwers, Thomas Witdouck
{"title":"The \u0000 \u0000 \u0000 R\u0000 ∞\u0000 \u0000 $R_infty$\u0000 -property and commensurability for nilpotent groups","authors":"Maarten Lathouwers,&nbsp;Thomas Witdouck","doi":"10.1002/mana.202400154","DOIUrl":"https://doi.org/10.1002/mana.202400154","url":null,"abstract":"<p>For finitely generated torsion-free nilpotent groups, the associated Mal'cev Lie algebra of the group is used frequently when studying the <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>R</mi>\u0000 <mi>∞</mi>\u0000 </msub>\u0000 <annotation>$R_infty$</annotation>\u0000 </semantics></math>-property. Two such groups have isomorphic Mal'cev Lie algebras if and only if they are abstractly commensurable. We show that the <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>R</mi>\u0000 <mi>∞</mi>\u0000 </msub>\u0000 <annotation>$R_infty$</annotation>\u0000 </semantics></math>-property is not invariant under abstract commensurability within the class of finitely generated torsion-free nilpotent groups by providing counterexamples within a class of 2-step nilpotent groups associated to edge-weighted graphs. These groups are abstractly commensurable to 2-step nilpotent quotients of right-angled Artin groups.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"602-616"},"PeriodicalIF":0.8,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-parameter Triebel–Lizorkin spaces associated with a sum of two flag singular integrals 与两个标志奇异积分和相关的三参数triiebel - lizorkin空间
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-12-11 DOI: 10.1002/mana.202400208
Yan Chen, Xiangxing Tao, Taotao Zheng
{"title":"Three-parameter Triebel–Lizorkin spaces associated with a sum of two flag singular integrals","authors":"Yan Chen,&nbsp;Xiangxing Tao,&nbsp;Taotao Zheng","doi":"10.1002/mana.202400208","DOIUrl":"https://doi.org/10.1002/mana.202400208","url":null,"abstract":"<p>In this paper, the authors establish the three-parameter Triebel–Lizorkin spaces and characterize these spaces as the intersection of two flag Triebel–Lizorkin spaces by applying the discrete Littlewood–Paley–Stein analysis. Moreover, they obtain the boundedness of product singular integral operators on the three-parameter Triebel–Lizorkin spaces.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"581-601"},"PeriodicalIF":0.8,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Entropy numbers and box dimension of polynomials and holomorphic functions 多项式和全态函数的熵数和箱维数
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-11-29 DOI: 10.1002/mana.202400042
Daniel Carando, Carlos D'Andrea, Leodan A. Torres, Pablo Turco
{"title":"Entropy numbers and box dimension of polynomials and holomorphic functions","authors":"Daniel Carando,&nbsp;Carlos D'Andrea,&nbsp;Leodan A. Torres,&nbsp;Pablo Turco","doi":"10.1002/mana.202400042","DOIUrl":"https://doi.org/10.1002/mana.202400042","url":null,"abstract":"<p>We study entropy numbers and box dimension of (the image of) homogeneous polynomials and holomorphic functions between Banach spaces. First, we see that entropy numbers and box dimensions of subsets of Banach spaces are related. We show that the box dimension of the image of a ball under a homogeneous polynomial is finite if and only if it spans a finite-dimensional subspace, but this is not true for holomorphic functions. Furthermore, we relate the entropy numbers of a holomorphic function to those of the polynomials of its Taylor series expansion. As a consequence, if the box dimension of the image of a ball by a holomorphic function <span></span><math>\u0000 <semantics>\u0000 <mi>f</mi>\u0000 <annotation>$f$</annotation>\u0000 </semantics></math> is finite, then the entropy numbers of the polynomials in the Taylor series expansion of <span></span><math>\u0000 <semantics>\u0000 <mi>f</mi>\u0000 <annotation>$f$</annotation>\u0000 </semantics></math> at any point of the ball belong to <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>ℓ</mi>\u0000 <mi>p</mi>\u0000 </msub>\u0000 <annotation>$ell _p$</annotation>\u0000 </semantics></math> for every <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>p</mi>\u0000 <mo>&gt;</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$p&gt;1$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"567-580"},"PeriodicalIF":0.8,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polyharmonic fields and Liouville quantum gravity measures on tori of arbitrary dimension: From discrete to continuous 任意维环面上的多谐场和刘维尔量子引力测量:从离散到连续
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-11-27 DOI: 10.1002/mana.202400169
Lorenzo Dello Schiavo, Ronan Herry, Eva Kopfer, Karl-Theodor Sturm
{"title":"Polyharmonic fields and Liouville quantum gravity measures on tori of arbitrary dimension: From discrete to continuous","authors":"Lorenzo Dello Schiavo,&nbsp;Ronan Herry,&nbsp;Eva Kopfer,&nbsp;Karl-Theodor Sturm","doi":"10.1002/mana.202400169","DOIUrl":"https://doi.org/10.1002/mana.202400169","url":null,"abstract":"<p>For an arbitrary dimension <span></span><math>\u0000 <semantics>\u0000 <mi>n</mi>\u0000 <annotation>$n$</annotation>\u0000 </semantics></math>, we study: \u0000\u0000 </p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 1","pages":"244-281"},"PeriodicalIF":0.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400169","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143120096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Twisted conjugacy in soluble arithmetic groups 可溶算术群中的扭共轭
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-11-27 DOI: 10.1002/mana.202300448
Paula M. Lins de Araujo, Yuri Santos Rego
{"title":"Twisted conjugacy in soluble arithmetic groups","authors":"Paula M. Lins de Araujo,&nbsp;Yuri Santos Rego","doi":"10.1002/mana.202300448","DOIUrl":"https://doi.org/10.1002/mana.202300448","url":null,"abstract":"<p>Reidemeister numbers of group automorphisms encode the number of twisted conjugacy classes of groups and might yield information about self-maps of spaces related to the given objects. Here, we address a question posed by Gonçalves and Wong in the mid-2000s: we construct an infinite series of compact connected solvmanifolds (that are <i>not</i> <i>nil</i>manifolds) of strictly increasing dimensions and all of whose self-homotopy equivalences have vanishing Nielsen number. To this end, we establish a sufficient condition for a prominent (infinite) family of soluble linear groups to have the so-called property <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>R</mi>\u0000 <mi>∞</mi>\u0000 </msub>\u0000 <annotation>$R_infty$</annotation>\u0000 </semantics></math>. In particular, we generalize or complement earlier results due to Dekimpe, Gonçalves, Kochloukova, Nasybullov, Taback, Tertooy, Van den Bussche, and Wong, showing that many soluble <span></span><math>\u0000 <semantics>\u0000 <mi>S</mi>\u0000 <annotation>$S$</annotation>\u0000 </semantics></math>-arithmetic groups have <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>R</mi>\u0000 <mi>∞</mi>\u0000 </msub>\u0000 <annotation>$R_infty$</annotation>\u0000 </semantics></math> and suggesting a conjecture in this direction.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 3","pages":"763-793"},"PeriodicalIF":0.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300448","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143595679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On non-Hopf Ricci-pseudosymmetric hypersurfaces in C P 2 $mathbb {C}P^{2}$ and C H 2 $mathbb {C}H^{2}$ 论 C P 2 $mathbb {C}P^{2}$ 和 C H 2 $mathbb {C}H^{2}$ 中的非霍普夫里奇伪对称超曲面
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-11-27 DOI: 10.1002/mana.202300463
Qianshun Cui, Zejun Hu
{"title":"On non-Hopf Ricci-pseudosymmetric hypersurfaces in \u0000 \u0000 \u0000 C\u0000 \u0000 P\u0000 2\u0000 \u0000 \u0000 $mathbb {C}P^{2}$\u0000 and \u0000 \u0000 \u0000 C\u0000 \u0000 H\u0000 2\u0000 \u0000 \u0000 $mathbb {C}H^{2}$","authors":"Qianshun Cui,&nbsp;Zejun Hu","doi":"10.1002/mana.202300463","DOIUrl":"https://doi.org/10.1002/mana.202300463","url":null,"abstract":"<p>In this paper, we study an open problem raised by Cecil and Ryan [<i>Geometry of Hypersurfaces</i>, Springer Monographs in Mathematics, p. 531] which asked whether there exist non-Hopf Ricci-pseudosymmetric hypersurfaces in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$mathbb {C}P^{2}$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$mathbb {C}H^{2}$</annotation>\u0000 </semantics></math>. As our main results, we first prove the nonexistence of non-Hopf Ricci-pseudosymmetric hypersurfaces of the constant type in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$mathbb {C}H^{2}$</annotation>\u0000 </semantics></math>. Then, we prove the existence of non-Hopf Ricci-pseudosymmetric hypersurfaces of the constant type in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$mathbb {C}P^{2}$</annotation>\u0000 </semantics></math>. Finally, applying the preceding results and sharpening Theorem 4.1 of Wang and Zhang [<i>J. Geom. Phys</i>. <b>181</b> (2022), 104648], we prove the nonexistence of non-Hopf weakly Einstein hypersurfaces with constant norm of Riemannian curvature tensor in both <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$mathbb {C}P^{2}$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>C</mi>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$mathbb {C}H^{2}$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"527-547"},"PeriodicalIF":0.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Abstract integro-differential equations with state-dependent integration intervals: Existence, uniqueness, and local well-posedness 具有状态相关积分区间的积分微分方程:存在性、唯一性和局部适定性
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-11-27 DOI: 10.1002/mana.202400126
Eduardo Hernandez, Shashank Pandey, Dwijendra N. Pandey
{"title":"Abstract integro-differential equations with state-dependent integration intervals: Existence, uniqueness, and local well-posedness","authors":"Eduardo Hernandez,&nbsp;Shashank Pandey,&nbsp;Dwijendra N. Pandey","doi":"10.1002/mana.202400126","DOIUrl":"https://doi.org/10.1002/mana.202400126","url":null,"abstract":"<p>In this work, we study a new class of integro-differential equations with delay, where the informations from the past are represented as an average of the state over state-dependent integration intervals. We establish results on the local and global existence and qualitative properties of solutions. The models presented and the ideas developed will allow the generalization of an extensive literature on different classes of functional differential equations. The last section presents some examples motivated by integro-differential equations arising in the theory of population dynamics.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 1","pages":"356-384"},"PeriodicalIF":0.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143120066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of the log-convex minorant of a sequence { M α } α ∈ N 0 d $lbrace M_alpha rbrace _{alpha in mathbb {N}_0^d}$ 序列{M α} α∈n0 d $lbrace M_alpha rbrace _{alpha in mathbb {N}_0^d}$的对数凸次幂的构造
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-11-27 DOI: 10.1002/mana.202400135
Chiara Boiti, David Jornet, Alessandro Oliaro, Gerhard Schindl
{"title":"Construction of the log-convex minorant of a sequence \u0000 \u0000 \u0000 \u0000 {\u0000 \u0000 M\u0000 α\u0000 \u0000 }\u0000 \u0000 \u0000 α\u0000 ∈\u0000 \u0000 N\u0000 0\u0000 d\u0000 \u0000 \u0000 \u0000 $lbrace M_alpha rbrace _{alpha in mathbb {N}_0^d}$","authors":"Chiara Boiti,&nbsp;David Jornet,&nbsp;Alessandro Oliaro,&nbsp;Gerhard Schindl","doi":"10.1002/mana.202400135","DOIUrl":"https://doi.org/10.1002/mana.202400135","url":null,"abstract":"&lt;p&gt;We give a simple construction of the log-convex minorant of a sequence &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;{&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;}&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;α&lt;/mi&gt;\u0000 &lt;mo&gt;∈&lt;/mo&gt;\u0000 &lt;msubsup&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;/msubsup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$lbrace M_alpha rbrace _{alpha in mathbb {N}_0^d}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and consequently extend to the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;annotation&gt;$d$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-dimensional case the well-known formula that relates a log-convex sequence &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;{&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;}&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;mo&gt;∈&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$lbrace M_prbrace _{pin mathbb {N}_0}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; to its associated function &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;ω&lt;/mi&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;annotation&gt;$omega _M$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, that is, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;M&lt;/mi&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mo&gt;sup&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;mo&gt;&gt;&lt;/mo&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;t&lt;/mi&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mi&gt;exp&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;m","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"456-477"},"PeriodicalIF":0.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400135","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partitions in real quadratic fields 实二次域中的分区
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-11-27 DOI: 10.1002/mana.202300480
David Stern, Mikuláš Zindulka
{"title":"Partitions in real quadratic fields","authors":"David Stern,&nbsp;Mikuláš Zindulka","doi":"10.1002/mana.202300480","DOIUrl":"https://doi.org/10.1002/mana.202300480","url":null,"abstract":"<p>We study partitions of totally positive integers in real quadratic fields. We develop an algorithm for computing the number of partitions, prove a result about the parity of the partition function, and characterize the quadratic fields such that there exists an element with exactly 1–5, 7, and 11 partitions.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"548-566"},"PeriodicalIF":0.8,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300480","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143397242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信