Mathematische Nachrichten最新文献

筛选
英文 中文
A revised condition for harmonic analysis in generalized Orlicz spaces on unbounded domains 无界域上广义奥利兹空间谐波分析的修订条件
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-06-04 DOI: 10.1002/mana.202300416
Petteri Harjulehto, Peter Hästö, Artur Słabuszewski
{"title":"A revised condition for harmonic analysis in generalized Orlicz spaces on unbounded domains","authors":"Petteri Harjulehto,&nbsp;Peter Hästö,&nbsp;Artur Słabuszewski","doi":"10.1002/mana.202300416","DOIUrl":"https://doi.org/10.1002/mana.202300416","url":null,"abstract":"<p>Conditions for harmonic analysis in generalized Orlicz spaces have been studied over the past decade. One approach involves the generalized inverse of so-called weak <span></span><math>\u0000 <semantics>\u0000 <mi>Φ</mi>\u0000 <annotation>$Phi$</annotation>\u0000 </semantics></math>-functions. It featured prominently in the monograph <i>Orlicz Spaces and Generalized Orlicz Spaces</i>\u0000[P. Harjulehto and P. Hästö, Lecture Notes in Mathematics, vol. 2236, Springer, Cham, 2019]. While generally successful, the inverse function formulation of the decay condition (A2) in the monograph contains a flaw, which we explain and correct in this note. We also present some new results related to the conditions, including a more general result for the density of smooth functions.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300416","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regularity results for Hölder minimizers to functionals with non-standard growth 非标准增长函数的赫尔德最小值的正则性结果
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-05-16 DOI: 10.1002/mana.202300412
Antonio Giuseppe Grimaldi, Erica Ipocoana
{"title":"Regularity results for Hölder minimizers to functionals with non-standard growth","authors":"Antonio Giuseppe Grimaldi,&nbsp;Erica Ipocoana","doi":"10.1002/mana.202300412","DOIUrl":"10.1002/mana.202300412","url":null,"abstract":"<p>We study the regularity properties of Hölder continuous minimizers to non-autonomous functionals satisfying <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>p</mi>\u0000 <mo>,</mo>\u0000 <mi>q</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(p,q)$</annotation>\u0000 </semantics></math>-growth conditions, under Besov assumptions on the coefficients. In particular, we are able to prove higher integrability and higher differentiability results for solutions to our minimum problem.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141062833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Well-posedness and time decay of fractional Keller–Segel–Navier-Stokes equations in homogeneous Besov spaces 同质贝索夫空间中分数凯勒-西格尔-纳维尔-斯托克斯方程的良好拟合和时间衰减
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-05-16 DOI: 10.1002/mana.202300325
Ziwen Jiang, Lizhen Wang
{"title":"Well-posedness and time decay of fractional Keller–Segel–Navier-Stokes equations in homogeneous Besov spaces","authors":"Ziwen Jiang,&nbsp;Lizhen Wang","doi":"10.1002/mana.202300325","DOIUrl":"10.1002/mana.202300325","url":null,"abstract":"<p>In this paper, we consider the parabolic–elliptic Keller–Segel system, which is coupled to the incompressible Navier–Stokes equations through transportation and friction. It is shown that when the system is diffused by Lévy motion, the well-posedness of the mild solution to the corresponding Cauchy problem in homogeneous Besov spaces is established by means of the Banach fixed point theorem. Furthermore, we prove the Lorentz regularity in time direction and the maximal regularity of solutions. In addition, we obtain the additional regularity and explore the time decay property of global mild solutions.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140968062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Hilbert-space variant of Geršgorin's circle theorem 格尔斯戈林圆定理的希尔伯特空间变体
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-05-13 DOI: 10.1002/mana.202300153
Marcus Carlsson, Olof Rubin
{"title":"A Hilbert-space variant of Geršgorin's circle theorem","authors":"Marcus Carlsson,&nbsp;Olof Rubin","doi":"10.1002/mana.202300153","DOIUrl":"10.1002/mana.202300153","url":null,"abstract":"<p>We provide a variant of Geršgorin's circle theorem, where the <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>ℓ</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <annotation>$ell ^1$</annotation>\u0000 </semantics></math>-estimates are swapped for <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>ℓ</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>$ell ^2$</annotation>\u0000 </semantics></math>-estimates, more suitable for the infinite-dimensional Hilbert space setting.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300153","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140985550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hyperelliptic genus 3 curves with involutions and a Prym map 具有渐开线的超椭圆属 3 曲线和普赖姆映射
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-05-13 DOI: 10.1002/mana.202300468
Paweł Borówka, Anatoli Shatsila
{"title":"Hyperelliptic genus 3 curves with involutions and a Prym map","authors":"Paweł Borówka,&nbsp;Anatoli Shatsila","doi":"10.1002/mana.202300468","DOIUrl":"10.1002/mana.202300468","url":null,"abstract":"<p>We characterize genus 3 complex smooth hyperelliptic curves that admit two additional involutions as curves that can be built from five points in <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <annotation>$mathbb {P}^1$</annotation>\u0000 </semantics></math> with a distinguished triple. We are able to write down explicit equations for the curves and all their quotient curves. We show that, fixing one of the elliptic quotient curve, the Prym map becomes a 2:1 map and therefore the hyperelliptic Klein Prym map, constructed recently by the first author with A. Ortega, is also 2:1 in this case. As a by-product we show an explicit family of <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>1</mn>\u0000 <mo>,</mo>\u0000 <mi>d</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(1,d)$</annotation>\u0000 </semantics></math> polarized abelian surfaces (for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>&gt;</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$d&amp;gt;1$</annotation>\u0000 </semantics></math>), such that any surface in the family satisfying a certain explicit condition is abstractly non-isomorphic to its dual abelian surface.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141058686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global existence and stability of the wave equation with boundary variable damping 具有边界可变阻尼的波方程的全局存在性和稳定性
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-05-10 DOI: 10.1002/mana.202300003
Boulmerka Imane, Hamchi Ilhem
{"title":"Global existence and stability of the wave equation with boundary variable damping","authors":"Boulmerka Imane,&nbsp;Hamchi Ilhem","doi":"10.1002/mana.202300003","DOIUrl":"10.1002/mana.202300003","url":null,"abstract":"<p>In this paper, we present the result of global existence of solution for the wave equation with boundary variable damping term. Then, we prove that this global solution is stable. Our study is based on the semi-groups theory and some integral inequalities.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140935200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The fundamental solution of the master equation for a jump-diffusion Ornstein–Uhlenbeck process 跃迁扩散奥恩斯坦-乌伦贝克过程主方程的基本解
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-05-08 DOI: 10.1002/mana.202300200
Olga S. Rozanova, Nikolai A. Krutov
{"title":"The fundamental solution of the master equation for a jump-diffusion Ornstein–Uhlenbeck process","authors":"Olga S. Rozanova,&nbsp;Nikolai A. Krutov","doi":"10.1002/mana.202300200","DOIUrl":"10.1002/mana.202300200","url":null,"abstract":"<p>An integro-differential equation for the probability density of the generalized stochastic Ornstein–Uhlenbeck process with jump diffusion is considered for a special case of the Laplacian distribution of jumps. It is shown that for a certain ratio between the intensity of jumps and the speed of reversion, the fundamental solution can be found explicitly, as a finite sum. Alternatively, the fundamental solution can be represented as converging power series. The properties of this solution are investigated. The fundamental solution makes it possible to obtain explicit formulas for the density at each instant of time, which is important, for example, for testing numerical methods.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140934872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to “Isomorphisms of Galois groups of number fields with restricted ramification” 对 "具有受限斜率的数域伽罗瓦群的同构 "的更正
IF 1 3区 数学
Mathematische Nachrichten Pub Date : 2024-05-03 DOI: 10.1002/mana.202480013
{"title":"Correction to “Isomorphisms of Galois groups of number fields with restricted ramification”","authors":"","doi":"10.1002/mana.202480013","DOIUrl":"10.1002/mana.202480013","url":null,"abstract":"<p>R. Shimizu, <i>Isomorphisms of Galois groups of number fields with restricted ramification</i>, Math. Nachr. <b>296</b> (2023), 3026–3033. https://doi.org/10.1002/mana.202100438</p><p>References for this article are updated.</p><p>We apologize for this error.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":1.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202480013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140833952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linearization of holomorphic Lipschitz functions 全形 Lipschitz 函数的线性化
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-05-03 DOI: 10.1002/mana.202300527
Richard Aron, Verónica Dimant, Luis C. García-Lirola, Manuel Maestre
{"title":"Linearization of holomorphic Lipschitz functions","authors":"Richard Aron,&nbsp;Verónica Dimant,&nbsp;Luis C. García-Lirola,&nbsp;Manuel Maestre","doi":"10.1002/mana.202300527","DOIUrl":"10.1002/mana.202300527","url":null,"abstract":"<p>Let <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$X$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mi>Y</mi>\u0000 <annotation>$Y$</annotation>\u0000 </semantics></math> be complex Banach spaces with <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>B</mi>\u0000 <mi>X</mi>\u0000 </msub>\u0000 <annotation>$B_X$</annotation>\u0000 </semantics></math> denoting the open unit ball of <span></span><math>\u0000 <semantics>\u0000 <mi>X</mi>\u0000 <annotation>$X$</annotation>\u0000 </semantics></math>. This paper studies various aspects of the <i>holomorphic Lipschitz space</i> <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>H</mi>\u0000 <msub>\u0000 <mi>L</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>B</mi>\u0000 <mi>X</mi>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <mi>Y</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathcal {H}L_0(B_X,Y)$</annotation>\u0000 </semantics></math>, endowed with the Lipschitz norm. This space consists of the functions in the intersection of the sets <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mo>Lip</mo>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>B</mi>\u0000 <mi>X</mi>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <mi>Y</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$operatorname{Lip}_0(B_X,Y)$</annotation>\u0000 </semantics></math> of Lipschitz mappings and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mi>∞</mi>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msub>\u0000 <mi>B</mi>\u0000 <mi>X</mi>\u0000 </msub>\u0000 <mo>,</mo>\u0000 <mi>Y</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathcal {H}^infty (B_X,Y)$</annotation>\u0000 ","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300527","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140833954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Periodic solutions of the parabolic–elliptic Keller–Segel system on whole spaces 整体空间上抛物椭圆凯勒-西格尔系统的周期解
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2024-04-26 DOI: 10.1002/mana.202300311
Nguyen Thi Loan, Van Anh Nguyen Thi, Tran Van Thuy, Pham Truong Xuan
{"title":"Periodic solutions of the parabolic–elliptic Keller–Segel system on whole spaces","authors":"Nguyen Thi Loan,&nbsp;Van Anh Nguyen Thi,&nbsp;Tran Van Thuy,&nbsp;Pham Truong Xuan","doi":"10.1002/mana.202300311","DOIUrl":"10.1002/mana.202300311","url":null,"abstract":"<p>In this paper, we investigate to the existence and uniqueness of periodic solutions for the parabolic–elliptic Keller–Segel system on whole spaces detailized by Euclidean space <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <mspace></mspace>\u0000 <mspace></mspace>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mspace></mspace>\u0000 <mtext>where</mtext>\u0000 <mspace></mspace>\u0000 <mi>n</mi>\u0000 <mo>⩾</mo>\u0000 <mn>4</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathbb {R}^n,,(hbox{ where }n geqslant 4)$</annotation>\u0000 </semantics></math> and real hyperbolic space <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <mspace></mspace>\u0000 <mspace></mspace>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mtext>where</mtext>\u0000 <mspace></mspace>\u0000 <mi>n</mi>\u0000 <mo>⩾</mo>\u0000 <mn>2</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$mathbb {H}^n,, (hbox{where }n geqslant 2)$</annotation>\u0000 </semantics></math>. We work in framework of critical spaces such as on weak-Lorentz space <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mrow>\u0000 <mfrac>\u0000 <mi>n</mi>\u0000 <mn>2</mn>\u0000 </mfrac>\u0000 <mo>,</mo>\u0000 <mi>∞</mi>\u0000 </mrow>\u0000 </msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$L^{frac{n}{2},infty }(mathbb {R}^n)$</annotation>\u0000 </semantics></math> to obtain the results for the Keller–Segel system on <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <annotation>$mathbb {R}^n$</annotation>\u0000 </semantics></math> and on <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mfrac>\u0000 <mi>p</mi>\u0000 <mn>2</mn>\u0000 ","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":null,"pages":null},"PeriodicalIF":0.8,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140809654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信