{"title":"On the differential geometry of smooth ruled surfaces in 4-space","authors":"Jorge Luiz Deolindo-Silva","doi":"10.1002/mana.202400295","DOIUrl":"https://doi.org/10.1002/mana.202400295","url":null,"abstract":"<p>A smooth ruled surface in 4-space has only parabolic points or inflection points of the real type. We show, by means of contact with transverse planes, that at a parabolic point, there exist two tangent directions determining two planes along which the parallel projection exhibits <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$mathcal {A}$</annotation>\u0000 </semantics></math>-singularities of type butterfly or worse. In particular, such parabolic points can be classified as butterfly hyperbolic, parabolic, or elliptic points depending on the value of the discriminant of a binary differential equation (BDE). Also, whenever such discriminant is positive, we ensure that the integral curves of these directions form a pair of foliations on the ruled surface. Moreover, the set of points that nullify the discriminant is a regular curve transverse to the regular curve formed by inflection points of the real type. Finally, using a particular projective transformation, we obtain a simple parametrization of the ruled surface such that the moduli of its 5-jet identify a butterfly hyperbolic/parabolic/elliptic point, as well as we get the stable configurations of the solutions of BDE in the discriminant curve.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4689-4704"},"PeriodicalIF":0.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexandre Kirilov, André Pedroso Kowacs, Wagner Augusto Almeida de Moraes
{"title":"Global solvability and hypoellipticity for evolution operators on tori and spheres","authors":"Alexandre Kirilov, André Pedroso Kowacs, Wagner Augusto Almeida de Moraes","doi":"10.1002/mana.202300506","DOIUrl":"https://doi.org/10.1002/mana.202300506","url":null,"abstract":"<p>In this paper, we investigate global properties of a class of evolution differential operators defined on a product of tori and spheres. We present a comprehensive characterization of global solvability and hypoellipticity, providing necessary and sufficient conditions that involve Diophantine conditions and the connectedness of sublevel sets associated with the coefficients of the operator. Furthermore, we recover well-known results from existing literature and introduce novel contributions.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4605-4650"},"PeriodicalIF":0.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Noether–Lefschetz locus of surfaces in \u0000 \u0000 \u0000 P\u0000 3\u0000 \u0000 ${mathbb {P}}^3$\u0000 formed by determinantal surfaces","authors":"Manuel Leal, César Lozano Huerta, Montserrat Vite","doi":"10.1002/mana.202400132","DOIUrl":"https://doi.org/10.1002/mana.202400132","url":null,"abstract":"<p>We compute the dimension of certain components of the family of smooth determinantal degree <span></span><math>\u0000 <semantics>\u0000 <mi>d</mi>\u0000 <annotation>$d$</annotation>\u0000 </semantics></math> surfaces in <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>3</mn>\u0000 </msup>\u0000 <annotation>${mathbb {P}}^3$</annotation>\u0000 </semantics></math>, and show that each of them is the closure of a component of the Noether–Lefschetz locus <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>N</mi>\u0000 <mi>L</mi>\u0000 <mo>(</mo>\u0000 <mi>d</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$NL(d)$</annotation>\u0000 </semantics></math>. Our computations exhibit that smooth determinantal surfaces in <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>3</mn>\u0000 </msup>\u0000 <annotation>${mathbb {P}}^3$</annotation>\u0000 </semantics></math> of degree 4 form a divisor in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>|</mo>\u0000 </mrow>\u0000 <msub>\u0000 <mi>O</mi>\u0000 <msup>\u0000 <mi>P</mi>\u0000 <mn>3</mn>\u0000 </msup>\u0000 </msub>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mn>4</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>|</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$|mathcal {O}_{{mathbb {P}}^3}(4)|$</annotation>\u0000 </semantics></math> with five irreducible components. We will compute the degrees of each of these components: <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>320</mn>\u0000 <mo>,</mo>\u0000 <mn>2508</mn>\u0000 <mo>,</mo>\u0000 <mn>136512</mn>\u0000 <mo>,</mo>\u0000 <mn>38475</mn>\u0000 </mrow>\u0000 <annotation>$320,2508,136512,38475$</annotation>\u0000 </semantics></math>, and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>320112</mn>\u0000 </mrow>\u0000 <annotation>$hskip.001pt 320112$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"297 12","pages":"4671-4688"},"PeriodicalIF":0.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}