{"title":"Approximation of skew Brownian motion by snapping-out Brownian motions","authors":"Adam Bobrowski, Elżbieta Ratajczyk","doi":"10.1002/mana.202400179","DOIUrl":"https://doi.org/10.1002/mana.202400179","url":null,"abstract":"<p>We elaborate on the theorem saying that as permeability coefficients of snapping-out Brownian motions tend to infinity in such a way that their ratio remains constant, these processes converge to a skew Brownian motion. In particular, convergence of the related semigroups, cosine families, and projections is discussed.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 3","pages":"829-848"},"PeriodicalIF":0.8,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143594854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Normal forms and Tyurin degenerations of K3 surfaces polarized by a rank 18 lattice","authors":"Charles F. Doran, Joseph Prebble, Alan Thompson","doi":"10.1002/mana.202400021","DOIUrl":"https://doi.org/10.1002/mana.202400021","url":null,"abstract":"<p>We study projective Type II degenerations of K3 surfaces polarized by a certain rank 18 lattice, where the central fiber consists of a pair of rational surfaces glued along a smooth elliptic curve. Given such a degeneration, one may construct other degenerations of the same kind by flopping curves on the central fiber, but the degenerations obtained from this process are not usually projective. We construct a series of examples which are all projective and which are all related by flopping single curves from one component of the central fiber to the other. Moreover, we show that this list is complete, in the sense that no other flops are possible. The components of the central fibers obtained include weak del Pezzo surfaces of all possible degrees. This shows that projectivity need not impose any meaningful constraints on the surfaces that can arise as components in Type II degenerations.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 3","pages":"806-828"},"PeriodicalIF":0.8,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143594880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana Granados, Ana Portilla, José M. Rodríguez-García, Eva Tourís
{"title":"Liouville property and quasi-isometries on non-positively curved Riemannian surfaces","authors":"Ana Granados, Ana Portilla, José M. Rodríguez-García, Eva Tourís","doi":"10.1002/mana.202400121","DOIUrl":"https://doi.org/10.1002/mana.202400121","url":null,"abstract":"<p>Kanai proved the stability under quasi-isometries of several global properties for Riemannian manifolds with the restriction of having positive injectivity radius. This work shows the stability of the Liouville property for Riemannian surfaces with non-positive curvature, where the restriction on the injectivity radius has been removed.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 3","pages":"794-805"},"PeriodicalIF":0.8,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143594879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On space-like class \u0000 \u0000 A\u0000 $mathcal {A}$\u0000 surfaces in Robertson–Walker spacetimes","authors":"Burcu Bektaş Demirci, Nurettin Cenk Turgay, Rüya Yeğin Şen","doi":"10.1002/mana.202400374","DOIUrl":"https://doi.org/10.1002/mana.202400374","url":null,"abstract":"<p>In this paper, we consider space-like surfaces in Robertson–Walker spacetimes <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>L</mi>\u0000 <mn>1</mn>\u0000 <mn>4</mn>\u0000 </msubsup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>f</mi>\u0000 <mo>,</mo>\u0000 <mi>c</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$L^4_1(f,c)$</annotation>\u0000 </semantics></math> with the comoving observer field <span></span><math>\u0000 <semantics>\u0000 <mfrac>\u0000 <mi>∂</mi>\u0000 <mrow>\u0000 <mi>∂</mi>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 </mfrac>\u0000 <annotation>$frac{partial }{partial t}$</annotation>\u0000 </semantics></math>. We study some problems related to such surfaces satisfying the geometric conditions imposed on the tangential and normal parts of the unit vector field <span></span><math>\u0000 <semantics>\u0000 <mfrac>\u0000 <mi>∂</mi>\u0000 <mrow>\u0000 <mi>∂</mi>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 </mfrac>\u0000 <annotation>$frac{partial }{partial t}$</annotation>\u0000 </semantics></math>, as naturally defined. First, we investigate space-like surfaces in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>L</mi>\u0000 <mn>1</mn>\u0000 <mn>4</mn>\u0000 </msubsup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>f</mi>\u0000 <mo>,</mo>\u0000 <mi>c</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$L^4_1(f,c)$</annotation>\u0000 </semantics></math> satisfying that the tangent component of <span></span><math>\u0000 <semantics>\u0000 <mfrac>\u0000 <mi>∂</mi>\u0000 <mrow>\u0000 <mi>∂</mi>\u0000 <mi>t</mi>\u0000 </mrow>\u0000 </mfrac>\u0000 <annotation>$frac{partial }{partial t}$</annotation>\u0000 </semantics></math> is an eigenvector of all shape operators, called class <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$mathcal {A}$</annotation>\u0000 </semantics></math> surfaces. Then, we get a classification theorem for space-like class <span></span><math>\u0000 <semantics>\u0000 <mi>A</mi>\u0000 <annotation>$mathcal {A}$</annotation>\u0000 </semantics></math> surfaces in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 ","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"718-729"},"PeriodicalIF":0.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143396841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}