由18阶晶格极化的K3表面的正态和Tyurin退化

IF 0.8 3区 数学 Q2 MATHEMATICS
Charles F. Doran, Joseph Prebble, Alan Thompson
{"title":"由18阶晶格极化的K3表面的正态和Tyurin退化","authors":"Charles F. Doran,&nbsp;Joseph Prebble,&nbsp;Alan Thompson","doi":"10.1002/mana.202400021","DOIUrl":null,"url":null,"abstract":"<p>We study projective Type II degenerations of K3 surfaces polarized by a certain rank 18 lattice, where the central fiber consists of a pair of rational surfaces glued along a smooth elliptic curve. Given such a degeneration, one may construct other degenerations of the same kind by flopping curves on the central fiber, but the degenerations obtained from this process are not usually projective. We construct a series of examples which are all projective and which are all related by flopping single curves from one component of the central fiber to the other. Moreover, we show that this list is complete, in the sense that no other flops are possible. The components of the central fibers obtained include weak del Pezzo surfaces of all possible degrees. This shows that projectivity need not impose any meaningful constraints on the surfaces that can arise as components in Type II degenerations.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 3","pages":"806-828"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400021","citationCount":"0","resultStr":"{\"title\":\"Normal forms and Tyurin degenerations of K3 surfaces polarized by a rank 18 lattice\",\"authors\":\"Charles F. Doran,&nbsp;Joseph Prebble,&nbsp;Alan Thompson\",\"doi\":\"10.1002/mana.202400021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study projective Type II degenerations of K3 surfaces polarized by a certain rank 18 lattice, where the central fiber consists of a pair of rational surfaces glued along a smooth elliptic curve. Given such a degeneration, one may construct other degenerations of the same kind by flopping curves on the central fiber, but the degenerations obtained from this process are not usually projective. We construct a series of examples which are all projective and which are all related by flopping single curves from one component of the central fiber to the other. Moreover, we show that this list is complete, in the sense that no other flops are possible. The components of the central fibers obtained include weak del Pezzo surfaces of all possible degrees. This shows that projectivity need not impose any meaningful constraints on the surfaces that can arise as components in Type II degenerations.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 3\",\"pages\":\"806-828\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400021\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400021\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400021","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了被某18阶晶格极化的K3曲面的投影II型退化,其中中心纤维由一对沿光滑椭圆曲线粘接的有理曲面组成。给定这样的退化,人们可以通过在中心纤维上的翻转曲线来构造其他同类的退化,但是从这个过程中得到的退化通常不是投影的。我们构造了一系列的例子,这些例子都是投影的,它们都是通过从中心纤维的一个分量到另一个分量的单曲线的变换而联系起来的。此外,我们还展示了这个列表是完整的,因为不可能出现其他失败。得到的中心纤维成分包括所有可能程度的弱德尔佩佐表面。这表明投射性不需要对II型退化中可能出现的组成部分的表面施加任何有意义的约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Normal forms and Tyurin degenerations of K3 surfaces polarized by a rank 18 lattice

Normal forms and Tyurin degenerations of K3 surfaces polarized by a rank 18 lattice

We study projective Type II degenerations of K3 surfaces polarized by a certain rank 18 lattice, where the central fiber consists of a pair of rational surfaces glued along a smooth elliptic curve. Given such a degeneration, one may construct other degenerations of the same kind by flopping curves on the central fiber, but the degenerations obtained from this process are not usually projective. We construct a series of examples which are all projective and which are all related by flopping single curves from one component of the central fiber to the other. Moreover, we show that this list is complete, in the sense that no other flops are possible. The components of the central fibers obtained include weak del Pezzo surfaces of all possible degrees. This shows that projectivity need not impose any meaningful constraints on the surfaces that can arise as components in Type II degenerations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信