三维多项式向量场的希尔伯特第16个问题的一个版本:计算孤立不变环面

IF 0.8 3区 数学 Q2 MATHEMATICS
D. D. Novaes, P. C. C. R. Pereira
{"title":"三维多项式向量场的希尔伯特第16个问题的一个版本:计算孤立不变环面","authors":"D. D. Novaes,&nbsp;P. C. C. R. Pereira","doi":"10.1002/mana.202300568","DOIUrl":null,"url":null,"abstract":"<p>Hilbert's 16th problem, about the maximum number of limit cycles of planar polynomial vector fields of a given degree <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>, has been one of the most important driving forces for new developments in the qualitative theory of vector fields. Increasing the dimension, one cannot expect the existence of a finite upper bound for the number of limit cycles of, for instance, 3D polynomial vector fields of a given degree <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>. Here, as an extension of such a problem in the 3D space, we investigate the number of isolated invariant tori in 3D polynomial vector fields. In this context, given a natural number <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>, we denote by <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$N(m)$</annotation>\n </semantics></math> the upper bound for the number of isolated invariant tori of 3D polynomial vector fields of degree <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>. Based on a recently developed averaging method for detecting invariant tori, our first main result provides a mechanism for constructing 3D differential vector fields with a number <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> of normally hyperbolic invariant tori from a given planar differential vector field with <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> hyperbolic limit cycles. The strength of our mechanism in studying the number <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$N(m)$</annotation>\n </semantics></math> lies in the fact that the constructed 3D differential vector field is polynomial provided that the given planar differential vector field is polynomial. Accordingly, our second main result establishes a lower bound for <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$N(m)$</annotation>\n </semantics></math> in terms of lower bounds for the number of hyperbolic limit cycles of planar polynomial vector fields of degree <span></span><math>\n <semantics>\n <mrow>\n <mo>[</mo>\n <mi>m</mi>\n <mo>/</mo>\n <mn>2</mn>\n <mo>]</mo>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$[m/2]-1$</annotation>\n </semantics></math>. Based on this last result, we apply a methodology due to Christopher and Lloyd to show that <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>(</mo>\n <mi>m</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$N(m)$</annotation>\n </semantics></math> grows as fast as <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>m</mi>\n <mn>3</mn>\n </msup>\n <mo>/</mo>\n <mn>128</mn>\n </mrow>\n <annotation>$m^3/128$</annotation>\n </semantics></math>. Finally, the above-mentioned problem is also formulated for higher dimensional polynomial vector fields.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"709-717"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A version of Hilbert's 16th problem for 3D polynomial vector fields: Counting isolated invariant tori\",\"authors\":\"D. D. Novaes,&nbsp;P. C. C. R. Pereira\",\"doi\":\"10.1002/mana.202300568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hilbert's 16th problem, about the maximum number of limit cycles of planar polynomial vector fields of a given degree <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$m$</annotation>\\n </semantics></math>, has been one of the most important driving forces for new developments in the qualitative theory of vector fields. Increasing the dimension, one cannot expect the existence of a finite upper bound for the number of limit cycles of, for instance, 3D polynomial vector fields of a given degree <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$m$</annotation>\\n </semantics></math>. Here, as an extension of such a problem in the 3D space, we investigate the number of isolated invariant tori in 3D polynomial vector fields. In this context, given a natural number <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$m$</annotation>\\n </semantics></math>, we denote by <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$N(m)$</annotation>\\n </semantics></math> the upper bound for the number of isolated invariant tori of 3D polynomial vector fields of degree <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$m$</annotation>\\n </semantics></math>. Based on a recently developed averaging method for detecting invariant tori, our first main result provides a mechanism for constructing 3D differential vector fields with a number <span></span><math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math> of normally hyperbolic invariant tori from a given planar differential vector field with <span></span><math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math> hyperbolic limit cycles. The strength of our mechanism in studying the number <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$N(m)$</annotation>\\n </semantics></math> lies in the fact that the constructed 3D differential vector field is polynomial provided that the given planar differential vector field is polynomial. Accordingly, our second main result establishes a lower bound for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$N(m)$</annotation>\\n </semantics></math> in terms of lower bounds for the number of hyperbolic limit cycles of planar polynomial vector fields of degree <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>[</mo>\\n <mi>m</mi>\\n <mo>/</mo>\\n <mn>2</mn>\\n <mo>]</mo>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$[m/2]-1$</annotation>\\n </semantics></math>. Based on this last result, we apply a methodology due to Christopher and Lloyd to show that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>(</mo>\\n <mi>m</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$N(m)$</annotation>\\n </semantics></math> grows as fast as <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>m</mi>\\n <mn>3</mn>\\n </msup>\\n <mo>/</mo>\\n <mn>128</mn>\\n </mrow>\\n <annotation>$m^3/128$</annotation>\\n </semantics></math>. Finally, the above-mentioned problem is also formulated for higher dimensional polynomial vector fields.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 2\",\"pages\":\"709-717\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300568\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300568","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

希尔伯特的第16个问题,关于给定次为m$ m$的平面多项式向量场的最大极限环数,是矢量场定性理论新发展的最重要推动力之一。增加维数,我们不能期望极限环数量的有限上界的存在,例如,给定次数m$ m$的三维多项式向量场。作为这一问题在三维空间中的推广,我们研究了三维多项式向量场中孤立不变环面的个数。在这种情况下,给定一个自然数m$ m$,我们用N(m)$ N(m)$表示次为m$ m$的三维多项式向量场的孤立不变环面数目的上界。基于最近发展的一种检测不变环面的平均方法,我们的第一个主要结果提供了一种机制,可以从给定的具有H$ H$双曲极限环的平面微分向量场中构造具有H$ H$常双曲不变环面的三维微分向量场。我们研究数字N(m)$ N(m)$的机制的优势在于,假设给定的平面微分向量场是多项式,则构造的三维微分向量场是多项式。因此,我们的第二个主要结果建立了N(m)$ N(m)$的下界,即次为[m / 2]−1的平面多项式向量场的双曲极限环数的下界(美元/ 2)1 $ .基于最后的结果,我们应用Christopher和Lloyd的方法来证明N(m)$ N(m)$的增长速度与m3 /128$ m^3/128$一样快。最后,对高维多项式向量场也给出了上述问题的公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A version of Hilbert's 16th problem for 3D polynomial vector fields: Counting isolated invariant tori

Hilbert's 16th problem, about the maximum number of limit cycles of planar polynomial vector fields of a given degree m $m$ , has been one of the most important driving forces for new developments in the qualitative theory of vector fields. Increasing the dimension, one cannot expect the existence of a finite upper bound for the number of limit cycles of, for instance, 3D polynomial vector fields of a given degree m $m$ . Here, as an extension of such a problem in the 3D space, we investigate the number of isolated invariant tori in 3D polynomial vector fields. In this context, given a natural number m $m$ , we denote by N ( m ) $N(m)$ the upper bound for the number of isolated invariant tori of 3D polynomial vector fields of degree m $m$ . Based on a recently developed averaging method for detecting invariant tori, our first main result provides a mechanism for constructing 3D differential vector fields with a number H $H$ of normally hyperbolic invariant tori from a given planar differential vector field with H $H$ hyperbolic limit cycles. The strength of our mechanism in studying the number N ( m ) $N(m)$ lies in the fact that the constructed 3D differential vector field is polynomial provided that the given planar differential vector field is polynomial. Accordingly, our second main result establishes a lower bound for N ( m ) $N(m)$ in terms of lower bounds for the number of hyperbolic limit cycles of planar polynomial vector fields of degree [ m / 2 ] 1 $[m/2]-1$ . Based on this last result, we apply a methodology due to Christopher and Lloyd to show that N ( m ) $N(m)$ grows as fast as m 3 / 128 $m^3/128$ . Finally, the above-mentioned problem is also formulated for higher dimensional polynomial vector fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信