{"title":"On space-like class \n \n A\n $\\mathcal {A}$\n surfaces in Robertson–Walker spacetimes","authors":"Burcu Bektaş Demirci, Nurettin Cenk Turgay, Rüya Yeğin Şen","doi":"10.1002/mana.202400374","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider space-like surfaces in Robertson–Walker spacetimes <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>L</mi>\n <mn>1</mn>\n <mn>4</mn>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>f</mi>\n <mo>,</mo>\n <mi>c</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^4_1(f,c)$</annotation>\n </semantics></math> with the comoving observer field <span></span><math>\n <semantics>\n <mfrac>\n <mi>∂</mi>\n <mrow>\n <mi>∂</mi>\n <mi>t</mi>\n </mrow>\n </mfrac>\n <annotation>$\\frac{\\partial }{\\partial t}$</annotation>\n </semantics></math>. We study some problems related to such surfaces satisfying the geometric conditions imposed on the tangential and normal parts of the unit vector field <span></span><math>\n <semantics>\n <mfrac>\n <mi>∂</mi>\n <mrow>\n <mi>∂</mi>\n <mi>t</mi>\n </mrow>\n </mfrac>\n <annotation>$\\frac{\\partial }{\\partial t}$</annotation>\n </semantics></math>, as naturally defined. First, we investigate space-like surfaces in <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>L</mi>\n <mn>1</mn>\n <mn>4</mn>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>f</mi>\n <mo>,</mo>\n <mi>c</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^4_1(f,c)$</annotation>\n </semantics></math> satisfying that the tangent component of <span></span><math>\n <semantics>\n <mfrac>\n <mi>∂</mi>\n <mrow>\n <mi>∂</mi>\n <mi>t</mi>\n </mrow>\n </mfrac>\n <annotation>$\\frac{\\partial }{\\partial t}$</annotation>\n </semantics></math> is an eigenvector of all shape operators, called class <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> surfaces. Then, we get a classification theorem for space-like class <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> surfaces in <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>L</mi>\n <mn>1</mn>\n <mn>4</mn>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>f</mi>\n <mo>,</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^4_1(f,0)$</annotation>\n </semantics></math>. Also, we examine minimal space-like class <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> surfaces in <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>L</mi>\n <mn>1</mn>\n <mn>4</mn>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>f</mi>\n <mo>,</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^4_1(f,0)$</annotation>\n </semantics></math>. Finally, we give the parameterizations of space-like surfaces in <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>L</mi>\n <mn>1</mn>\n <mn>4</mn>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>f</mi>\n <mo>,</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^4_1(f,0)$</annotation>\n </semantics></math> when the normal part of the unit vector field <span></span><math>\n <semantics>\n <mfrac>\n <mi>∂</mi>\n <mrow>\n <mi>∂</mi>\n <mi>t</mi>\n </mrow>\n </mfrac>\n <annotation>$\\frac{\\partial }{\\partial t}$</annotation>\n </semantics></math> is parallel.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"718-729"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400374","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider space-like surfaces in Robertson–Walker spacetimes with the comoving observer field . We study some problems related to such surfaces satisfying the geometric conditions imposed on the tangential and normal parts of the unit vector field , as naturally defined. First, we investigate space-like surfaces in satisfying that the tangent component of is an eigenvector of all shape operators, called class surfaces. Then, we get a classification theorem for space-like class surfaces in . Also, we examine minimal space-like class surfaces in . Finally, we give the parameterizations of space-like surfaces in when the normal part of the unit vector field is parallel.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index