论罗伯逊-沃克空间中的类空间 A $\mathcal {A}$ 表面

IF 0.8 3区 数学 Q2 MATHEMATICS
Burcu Bektaş Demirci, Nurettin Cenk Turgay, Rüya Yeğin Şen
{"title":"论罗伯逊-沃克空间中的类空间 A $\\mathcal {A}$ 表面","authors":"Burcu Bektaş Demirci,&nbsp;Nurettin Cenk Turgay,&nbsp;Rüya Yeğin Şen","doi":"10.1002/mana.202400374","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider space-like surfaces in Robertson–Walker spacetimes <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>L</mi>\n <mn>1</mn>\n <mn>4</mn>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>f</mi>\n <mo>,</mo>\n <mi>c</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^4_1(f,c)$</annotation>\n </semantics></math> with the comoving observer field <span></span><math>\n <semantics>\n <mfrac>\n <mi>∂</mi>\n <mrow>\n <mi>∂</mi>\n <mi>t</mi>\n </mrow>\n </mfrac>\n <annotation>$\\frac{\\partial }{\\partial t}$</annotation>\n </semantics></math>. We study some problems related to such surfaces satisfying the geometric conditions imposed on the tangential and normal parts of the unit vector field <span></span><math>\n <semantics>\n <mfrac>\n <mi>∂</mi>\n <mrow>\n <mi>∂</mi>\n <mi>t</mi>\n </mrow>\n </mfrac>\n <annotation>$\\frac{\\partial }{\\partial t}$</annotation>\n </semantics></math>, as naturally defined. First, we investigate space-like surfaces in <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>L</mi>\n <mn>1</mn>\n <mn>4</mn>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>f</mi>\n <mo>,</mo>\n <mi>c</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^4_1(f,c)$</annotation>\n </semantics></math> satisfying that the tangent component of <span></span><math>\n <semantics>\n <mfrac>\n <mi>∂</mi>\n <mrow>\n <mi>∂</mi>\n <mi>t</mi>\n </mrow>\n </mfrac>\n <annotation>$\\frac{\\partial }{\\partial t}$</annotation>\n </semantics></math> is an eigenvector of all shape operators, called class <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> surfaces. Then, we get a classification theorem for space-like class <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> surfaces in <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>L</mi>\n <mn>1</mn>\n <mn>4</mn>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>f</mi>\n <mo>,</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^4_1(f,0)$</annotation>\n </semantics></math>. Also, we examine minimal space-like class <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$\\mathcal {A}$</annotation>\n </semantics></math> surfaces in <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>L</mi>\n <mn>1</mn>\n <mn>4</mn>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>f</mi>\n <mo>,</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^4_1(f,0)$</annotation>\n </semantics></math>. Finally, we give the parameterizations of space-like surfaces in <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>L</mi>\n <mn>1</mn>\n <mn>4</mn>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>f</mi>\n <mo>,</mo>\n <mn>0</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^4_1(f,0)$</annotation>\n </semantics></math> when the normal part of the unit vector field <span></span><math>\n <semantics>\n <mfrac>\n <mi>∂</mi>\n <mrow>\n <mi>∂</mi>\n <mi>t</mi>\n </mrow>\n </mfrac>\n <annotation>$\\frac{\\partial }{\\partial t}$</annotation>\n </semantics></math> is parallel.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 2","pages":"718-729"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On space-like class \\n \\n A\\n $\\\\mathcal {A}$\\n surfaces in Robertson–Walker spacetimes\",\"authors\":\"Burcu Bektaş Demirci,&nbsp;Nurettin Cenk Turgay,&nbsp;Rüya Yeğin Şen\",\"doi\":\"10.1002/mana.202400374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider space-like surfaces in Robertson–Walker spacetimes <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>L</mi>\\n <mn>1</mn>\\n <mn>4</mn>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mi>f</mi>\\n <mo>,</mo>\\n <mi>c</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^4_1(f,c)$</annotation>\\n </semantics></math> with the comoving observer field <span></span><math>\\n <semantics>\\n <mfrac>\\n <mi>∂</mi>\\n <mrow>\\n <mi>∂</mi>\\n <mi>t</mi>\\n </mrow>\\n </mfrac>\\n <annotation>$\\\\frac{\\\\partial }{\\\\partial t}$</annotation>\\n </semantics></math>. We study some problems related to such surfaces satisfying the geometric conditions imposed on the tangential and normal parts of the unit vector field <span></span><math>\\n <semantics>\\n <mfrac>\\n <mi>∂</mi>\\n <mrow>\\n <mi>∂</mi>\\n <mi>t</mi>\\n </mrow>\\n </mfrac>\\n <annotation>$\\\\frac{\\\\partial }{\\\\partial t}$</annotation>\\n </semantics></math>, as naturally defined. First, we investigate space-like surfaces in <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>L</mi>\\n <mn>1</mn>\\n <mn>4</mn>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mi>f</mi>\\n <mo>,</mo>\\n <mi>c</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^4_1(f,c)$</annotation>\\n </semantics></math> satisfying that the tangent component of <span></span><math>\\n <semantics>\\n <mfrac>\\n <mi>∂</mi>\\n <mrow>\\n <mi>∂</mi>\\n <mi>t</mi>\\n </mrow>\\n </mfrac>\\n <annotation>$\\\\frac{\\\\partial }{\\\\partial t}$</annotation>\\n </semantics></math> is an eigenvector of all shape operators, called class <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> surfaces. Then, we get a classification theorem for space-like class <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> surfaces in <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>L</mi>\\n <mn>1</mn>\\n <mn>4</mn>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mi>f</mi>\\n <mo>,</mo>\\n <mn>0</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^4_1(f,0)$</annotation>\\n </semantics></math>. Also, we examine minimal space-like class <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$\\\\mathcal {A}$</annotation>\\n </semantics></math> surfaces in <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>L</mi>\\n <mn>1</mn>\\n <mn>4</mn>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mi>f</mi>\\n <mo>,</mo>\\n <mn>0</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^4_1(f,0)$</annotation>\\n </semantics></math>. Finally, we give the parameterizations of space-like surfaces in <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>L</mi>\\n <mn>1</mn>\\n <mn>4</mn>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mi>f</mi>\\n <mo>,</mo>\\n <mn>0</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^4_1(f,0)$</annotation>\\n </semantics></math> when the normal part of the unit vector field <span></span><math>\\n <semantics>\\n <mfrac>\\n <mi>∂</mi>\\n <mrow>\\n <mi>∂</mi>\\n <mi>t</mi>\\n </mrow>\\n </mfrac>\\n <annotation>$\\\\frac{\\\\partial }{\\\\partial t}$</annotation>\\n </semantics></math> is parallel.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 2\",\"pages\":\"718-729\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400374\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400374","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
On space-like class A $\mathcal {A}$ surfaces in Robertson–Walker spacetimes

In this paper, we consider space-like surfaces in Robertson–Walker spacetimes L 1 4 ( f , c ) $L^4_1(f,c)$ with the comoving observer field t $\frac{\partial }{\partial t}$ . We study some problems related to such surfaces satisfying the geometric conditions imposed on the tangential and normal parts of the unit vector field t $\frac{\partial }{\partial t}$ , as naturally defined. First, we investigate space-like surfaces in L 1 4 ( f , c ) $L^4_1(f,c)$ satisfying that the tangent component of t $\frac{\partial }{\partial t}$ is an eigenvector of all shape operators, called class A $\mathcal {A}$ surfaces. Then, we get a classification theorem for space-like class A $\mathcal {A}$ surfaces in L 1 4 ( f , 0 ) $L^4_1(f,0)$ . Also, we examine minimal space-like class A $\mathcal {A}$ surfaces in L 1 4 ( f , 0 ) $L^4_1(f,0)$ . Finally, we give the parameterizations of space-like surfaces in L 1 4 ( f , 0 ) $L^4_1(f,0)$ when the normal part of the unit vector field t $\frac{\partial }{\partial t}$ is parallel.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信