{"title":"Some inequalities on weighted Sobolev spaces, distance weights, and the Assouad dimension","authors":"Fernando López-García, Ignacio Ojea","doi":"10.1002/mana.70014","DOIUrl":"https://doi.org/10.1002/mana.70014","url":null,"abstract":"<p>We considercertain inequalities and a related result on weighted Sobolev spaces on bounded John domains in <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <annotation>${mathbb {R}}^n$</annotation>\u0000 </semantics></math>. Namely, we study the existence of a right inverse for the divergence operator, along with the corresponding a priori estimate, the improved and the fractional Poincaré inequalities, the Korn inequality, and the local Fefferman–Stein inequality. All these results are obtained on weighted Sobolev spaces, where the weight is a power of the distance to the boundary. In all cases the exponent of the weight <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <msup>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mo>·</mo>\u0000 <mo>,</mo>\u0000 <mi>∂</mi>\u0000 <mi>Ω</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mrow>\u0000 <mi>β</mi>\u0000 <mi>p</mi>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$d(cdot,partial Omega)^{beta p}$</annotation>\u0000 </semantics></math> is only required to satisfy the restriction: <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>β</mi>\u0000 <mi>p</mi>\u0000 <mo>></mo>\u0000 <mo>−</mo>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>−</mo>\u0000 <msub>\u0000 <mi>dim</mi>\u0000 <mi>A</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>∂</mi>\u0000 <mi>Ω</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$beta p>-(n-{rm dim}_A(partial Omega))$</annotation>\u0000 </semantics></math>, where <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math> is the exponent of the Sobolev space and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>dim</mi>\u0000 <mi>A</mi>\u0000 </msub>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>∂</mi>\u0000 <mi>Ω</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>${rm dim}_A(partial Omega)$</annotation>\u0000 </semantics></math> is the Assouad dimension of the boundary of the domain. To the best of our knowledge, this condition is less restrictive ","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2749-2769"},"PeriodicalIF":0.8,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144833206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A fractional-order trace-dev-div inequality","authors":"C. Carstensen, N. Heuer","doi":"10.1002/mana.70003","DOIUrl":"https://doi.org/10.1002/mana.70003","url":null,"abstract":"<p>The trace-dev-div inequality in <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mi>s</mi>\u0000 </msup>\u0000 <annotation>$H^s$</annotation>\u0000 </semantics></math> controls the trace in the norm of <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mi>s</mi>\u0000 </msup>\u0000 <annotation>$H^s$</annotation>\u0000 </semantics></math> by that of the deviatoric part plus the <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mrow>\u0000 <mi>s</mi>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$H^{s-1}$</annotation>\u0000 </semantics></math> norm of the divergence of a quadratic tensor field different from the constant unit matrix. This is well known for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>s</mi>\u0000 <mo>=</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$s=0$</annotation>\u0000 </semantics></math> and established for orders <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>0</mn>\u0000 <mo>≤</mo>\u0000 <mi>s</mi>\u0000 <mo>≤</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$0le sle 1$</annotation>\u0000 </semantics></math> and arbitrary space dimension in this paper. For mixed and least-squares finite element error analysis in linear elasticity, this inequality allows to establish robustness with respect to the Lamé parameter <span></span><math>\u0000 <semantics>\u0000 <mi>λ</mi>\u0000 <annotation>$lambda$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2493-2498"},"PeriodicalIF":0.8,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.70003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144833205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global strong solution for the two-dimensional magnetohydrodynamics equations with shearing-periodic boundary conditions","authors":"Shintaro Kondo, Tatsuki Nakamura","doi":"10.1002/mana.70012","DOIUrl":"https://doi.org/10.1002/mana.70012","url":null,"abstract":"<p>In this paper, we investigate the two-dimensional (2D), two-field magnetohydrodynamics (MHD) equations in the presence of a shear flow, assuming positive plasma viscosity and resistivity. We establish the global-in-time existence and uniqueness of a strong solution for the 2D two-field MHD equations under shearing-periodic boundary conditions, as proposed by Hawley et al. Moreover, we establish the existence and uniqueness of a strong solution for the linear advection-diffusion equation under shearing-periodic boundary condition by employing uniformly local <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>$L^2$</annotation>\u0000 </semantics></math> spaces.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2712-2739"},"PeriodicalIF":0.8,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144833204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Large time behavior for the nonlinear dissipative Boussinesq equation","authors":"Wenhui Chen, Hiroshi Takeda","doi":"10.1002/mana.70015","DOIUrl":"https://doi.org/10.1002/mana.70015","url":null,"abstract":"<p>In this paper, we study the nonlinear dissipative Boussinesq equation in the whole space <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <annotation>$mathbb {R}^n$</annotation>\u0000 </semantics></math> with <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <annotation>$L^1$</annotation>\u0000 </semantics></math> integrable data. As our preparations, the optimal estimates as well as the optimal leading terms for the linearized model are derived by performing the Wentzel–Kramers–Brillouin (WKB) analysis and the Fourier analysis. Then, under some conditions on the power <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math> of nonlinearity, we demonstrate global (in time) existence of small data Sobolev solutions with different regularities to the nonlinear model by applying some fractional-order interpolations, where the optimal growth (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>=</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$n=2$</annotation>\u0000 </semantics></math>) and decay (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>⩾</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$ngeqslant 3$</annotation>\u0000 </semantics></math>) estimates of solutions for large time are given. Simultaneously, we get a new large time asymptotic profile of global (in time) solutions. These results imply some influence of dispersion and dissipation on qualitative properties of solution.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2770-2793"},"PeriodicalIF":0.8,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144833212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}