Mathematische Nachrichten最新文献

筛选
英文 中文
Homogeneous Einstein and Einstein–Randers metrics on Stiefel manifolds Stiefel流形上的齐次Einstein和Einstein - randers度量
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-07-14 DOI: 10.1002/mana.70009
Marina Statha
{"title":"Homogeneous Einstein and Einstein–Randers metrics on Stiefel manifolds","authors":"Marina Statha","doi":"10.1002/mana.70009","DOIUrl":"https://doi.org/10.1002/mana.70009","url":null,"abstract":"<p>We study invariant Einstein metrics and Einstein–Randers metrics on the Stiefel manifold <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>V</mi>\u0000 <mi>k</mi>\u0000 </msub>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <mo>=</mo>\u0000 <mi>SO</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <mo>/</mo>\u0000 <mi>SO</mi>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>−</mo>\u0000 <mi>k</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$V_kmathbb {R}^n={mathsf {SO}}(n)/{mathsf {SO}}(n-k)$</annotation>\u0000 </semantics></math>. We use a characterization for (nonflat) homogeneous Einstein–Randers metrics as pairs of (nonflat) homogeneous Einstein metrics and invariant Killing vector fields. It is well known that, for Stiefel manifolds the isotropy representation contains equivalent summands, so a complete description of invariant metrics is difficult. We prove, by assuming additional symmetries, that the Stiefel manifolds <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>V</mi>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>+</mo>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </msub>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>+</mo>\u0000 <mn>2</mn>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 </msup>\u0000 <mspace></mspace>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>k</mi>\u0000 <mo>&gt;</mo>\u0000 <mn>2</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$V_{1+k}mathbb {R}^{1+2k} (k &gt; 2)$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>V</mi>\u0000 <mn>6</mn>\u0000 </msub>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <mspace></mspace>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>n</mi>\u0000 <mo>≥</mo>\u0000 <mn>8</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$V_{6}mathbb ","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2652-2674"},"PeriodicalIF":0.8,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144832907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some inequalities on weighted Sobolev spaces, distance weights, and the Assouad dimension 加权Sobolev空间上的一些不等式,距离权值和Assouad维
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-07-13 DOI: 10.1002/mana.70014
Fernando López-García, Ignacio Ojea
{"title":"Some inequalities on weighted Sobolev spaces, distance weights, and the Assouad dimension","authors":"Fernando López-García,&nbsp;Ignacio Ojea","doi":"10.1002/mana.70014","DOIUrl":"https://doi.org/10.1002/mana.70014","url":null,"abstract":"&lt;p&gt;We considercertain inequalities and a related result on weighted Sobolev spaces on bounded John domains in &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;R&lt;/mi&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;annotation&gt;${mathbb {R}}^n$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. Namely, we study the existence of a right inverse for the divergence operator, along with the corresponding a priori estimate, the improved and the fractional Poincaré inequalities, the Korn inequality, and the local Fefferman–Stein inequality. All these results are obtained on weighted Sobolev spaces, where the weight is a power of the distance to the boundary. In all cases the exponent of the weight &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;d&lt;/mi&gt;\u0000 &lt;msup&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mo&gt;·&lt;/mo&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;mi&gt;∂&lt;/mi&gt;\u0000 &lt;mi&gt;Ω&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;β&lt;/mi&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$d(cdot,partial Omega)^{beta p}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is only required to satisfy the restriction: &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;β&lt;/mi&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;mo&gt;&gt;&lt;/mo&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;dim&lt;/mi&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;∂&lt;/mi&gt;\u0000 &lt;mi&gt;Ω&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$beta p&gt;-(n-{rm dim}_A(partial Omega))$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, where &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;annotation&gt;$p$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is the exponent of the Sobolev space and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;dim&lt;/mi&gt;\u0000 &lt;mi&gt;A&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;∂&lt;/mi&gt;\u0000 &lt;mi&gt;Ω&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;${rm dim}_A(partial Omega)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; is the Assouad dimension of the boundary of the domain. To the best of our knowledge, this condition is less restrictive ","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2749-2769"},"PeriodicalIF":0.8,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144833206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A fractional-order trace-dev-div inequality 分数阶trace-dev-div不等式
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-07-13 DOI: 10.1002/mana.70003
C. Carstensen, N. Heuer
{"title":"A fractional-order trace-dev-div inequality","authors":"C. Carstensen,&nbsp;N. Heuer","doi":"10.1002/mana.70003","DOIUrl":"https://doi.org/10.1002/mana.70003","url":null,"abstract":"<p>The trace-dev-div inequality in <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mi>s</mi>\u0000 </msup>\u0000 <annotation>$H^s$</annotation>\u0000 </semantics></math> controls the trace in the norm of <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mi>s</mi>\u0000 </msup>\u0000 <annotation>$H^s$</annotation>\u0000 </semantics></math> by that of the deviatoric part plus the <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>H</mi>\u0000 <mrow>\u0000 <mi>s</mi>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$H^{s-1}$</annotation>\u0000 </semantics></math> norm of the divergence of a quadratic tensor field different from the constant unit matrix. This is well known for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>s</mi>\u0000 <mo>=</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$s=0$</annotation>\u0000 </semantics></math> and established for orders <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>0</mn>\u0000 <mo>≤</mo>\u0000 <mi>s</mi>\u0000 <mo>≤</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$0le sle 1$</annotation>\u0000 </semantics></math> and arbitrary space dimension in this paper. For mixed and least-squares finite element error analysis in linear elasticity, this inequality allows to establish robustness with respect to the Lamé parameter <span></span><math>\u0000 <semantics>\u0000 <mi>λ</mi>\u0000 <annotation>$lambda$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2493-2498"},"PeriodicalIF":0.8,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.70003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144833205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global strong solution for the two-dimensional magnetohydrodynamics equations with shearing-periodic boundary conditions 具有剪切周期边界条件的二维磁流体动力学方程的全局强解
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-07-13 DOI: 10.1002/mana.70012
Shintaro Kondo, Tatsuki Nakamura
{"title":"Global strong solution for the two-dimensional magnetohydrodynamics equations with shearing-periodic boundary conditions","authors":"Shintaro Kondo,&nbsp;Tatsuki Nakamura","doi":"10.1002/mana.70012","DOIUrl":"https://doi.org/10.1002/mana.70012","url":null,"abstract":"<p>In this paper, we investigate the two-dimensional (2D), two-field magnetohydrodynamics (MHD) equations in the presence of a shear flow, assuming positive plasma viscosity and resistivity. We establish the global-in-time existence and uniqueness of a strong solution for the 2D two-field MHD equations under shearing-periodic boundary conditions, as proposed by Hawley et al. Moreover, we establish the existence and uniqueness of a strong solution for the linear advection-diffusion equation under shearing-periodic boundary condition by employing uniformly local <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>$L^2$</annotation>\u0000 </semantics></math> spaces.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2712-2739"},"PeriodicalIF":0.8,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144833204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large time behavior for the nonlinear dissipative Boussinesq equation 非线性耗散Boussinesq方程的大时间行为
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-07-13 DOI: 10.1002/mana.70015
Wenhui Chen, Hiroshi Takeda
{"title":"Large time behavior for the nonlinear dissipative Boussinesq equation","authors":"Wenhui Chen,&nbsp;Hiroshi Takeda","doi":"10.1002/mana.70015","DOIUrl":"https://doi.org/10.1002/mana.70015","url":null,"abstract":"<p>In this paper, we study the nonlinear dissipative Boussinesq equation in the whole space <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <annotation>$mathbb {R}^n$</annotation>\u0000 </semantics></math> with <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mn>1</mn>\u0000 </msup>\u0000 <annotation>$L^1$</annotation>\u0000 </semantics></math> integrable data. As our preparations, the optimal estimates as well as the optimal leading terms for the linearized model are derived by performing the Wentzel–Kramers–Brillouin (WKB) analysis and the Fourier analysis. Then, under some conditions on the power <span></span><math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math> of nonlinearity, we demonstrate global (in time) existence of small data Sobolev solutions with different regularities to the nonlinear model by applying some fractional-order interpolations, where the optimal growth (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>=</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$n=2$</annotation>\u0000 </semantics></math>) and decay (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 <mo>⩾</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$ngeqslant 3$</annotation>\u0000 </semantics></math>) estimates of solutions for large time are given. Simultaneously, we get a new large time asymptotic profile of global (in time) solutions. These results imply some influence of dispersion and dissipation on qualitative properties of solution.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2770-2793"},"PeriodicalIF":0.8,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144833212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the completeness of the space O C $mathcal {O}_C$ 空间O C$ mathcal {O}_C$的完备性
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-07-11 DOI: 10.1002/mana.70013
Michael Kunzinger, Norbert Ortner
{"title":"On the completeness of the space \u0000 \u0000 \u0000 O\u0000 C\u0000 \u0000 $mathcal {O}_C$","authors":"Michael Kunzinger,&nbsp;Norbert Ortner","doi":"10.1002/mana.70013","DOIUrl":"https://doi.org/10.1002/mana.70013","url":null,"abstract":"&lt;p&gt;We explicitly prove the compact regularity of the &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mi&gt;LF&lt;/mi&gt;\u0000 &lt;annotation&gt;$mathcal {LF}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;-space of double sequences &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;lim&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;mo&gt;→&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 &lt;mover&gt;\u0000 &lt;mo&gt;⊗&lt;/mo&gt;\u0000 &lt;mo&gt;̂&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;ℓ&lt;/mi&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;≅&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;lim&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;mo&gt;→&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;s&lt;/mi&gt;\u0000 &lt;mover&gt;\u0000 &lt;mo&gt;⊗&lt;/mo&gt;\u0000 &lt;mo&gt;̂&lt;/mo&gt;\u0000 &lt;/mover&gt;\u0000 &lt;msub&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;c&lt;/mi&gt;\u0000 &lt;mn&gt;0&lt;/mn&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mi&gt;k&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$ {lim _{krightarrow }} (swidehat{otimes }(ell ^p)_{k}) cong {lim _{krightarrow }}(swidehat{otimes }(c_0)_{-k})$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;≤&lt;/mo&gt;\u0000 &lt;mi&gt;p&lt;/mi&gt;\u0000 &lt;mo&gt;≤&lt;/mo&gt;\u0000 &lt;mi&gt;∞&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$1le ple infty$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;. As a consequence, we obtain that the spaces of slowly and uni","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2740-2748"},"PeriodicalIF":0.8,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.70013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144832536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On asymptotically almost periodic mild solutions for wave equations on the whole space 全空间波动方程的渐近概周期温和解
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-07-11 DOI: 10.1002/mana.70010
Le The Sac, Pham Truong Xuan
{"title":"On asymptotically almost periodic mild solutions for wave equations on the whole space","authors":"Le The Sac,&nbsp;Pham Truong Xuan","doi":"10.1002/mana.70010","DOIUrl":"https://doi.org/10.1002/mana.70010","url":null,"abstract":"<p>We study the existence, uniqueness and polynomial stability of forward asymptotically almost periodic (AAP-) mild solutions for the wave equation with a singular potential on the whole space <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>R</mi>\u0000 <mi>n</mi>\u0000 </msup>\u0000 <annotation>$mathbb {R}^n$</annotation>\u0000 </semantics></math> in a framework of weak-<span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mi>p</mi>\u0000 </msup>\u0000 <annotation>$L^p$</annotation>\u0000 </semantics></math> spaces. First, we use a Yamazaki-type estimate for wave groups on Lorentz spaces to establish the global well-posedness of bounded mild solutions for the corresponding linear wave equations. Then, we provide a Massera-type principle which guarantees the existence of AAP-mild solutions for linear wave equations. Using the results of linear wave equations and fixed point arguments we establish the well-posedness of such solutions for semilinear wave equations. Finally, we obtain a polynomial stability for mild solutions by employing dispersive estimates.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2675-2690"},"PeriodicalIF":0.8,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144832535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Six-dimensional complex solvmanifolds with non-invariant trivializing sections of their canonical bundle 具有正则束非不变平凡化部分的六维复解流形
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-07-04 DOI: 10.1002/mana.70008
Alejandro Tolcachier
{"title":"Six-dimensional complex solvmanifolds with non-invariant trivializing sections of their canonical bundle","authors":"Alejandro Tolcachier","doi":"10.1002/mana.70008","DOIUrl":"https://doi.org/10.1002/mana.70008","url":null,"abstract":"<p>It is known that there exist complex solvmanifolds <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>Γ</mi>\u0000 <mo>∖</mo>\u0000 <mi>G</mi>\u0000 <mo>,</mo>\u0000 <mi>J</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(Gamma backslash G,J)$</annotation>\u0000 </semantics></math> whose canonical bundle is trivialized by a holomorphic section that is not invariant under the action of <span></span><math>\u0000 <semantics>\u0000 <mi>G</mi>\u0000 <annotation>$G$</annotation>\u0000 </semantics></math>. The main goal of this paper is to classify the six-dimensional Lie algebras corresponding to such complex solvmanifolds, thus extending the previous work of Fino, Otal, and Ugarte for the invariant case. To achieve this, we complete the classification of six-dimensional solvable strongly unimodular Lie algebras admitting complex structures and identify among them, the ones admitting complex structures with Chern–Ricci flat metrics. Finally, we construct complex solvmanifolds with non-invariant holomorphic sections of their canonical bundle. In particular, we present an example of one such solvmanifold that is not biholomorphic to a complex solvmanifold with an invariant holomorphic section of its canonical bundle. Additionally, we discover a new six-dimensional solvable strongly unimodular Lie algebra equipped with a complex structure that has a nonzero holomorphic (3,0)-form.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2626-2651"},"PeriodicalIF":0.8,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144832434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic stability of the stationary solution to the three-dimensional model of compressible reactive fluid 可压缩反应流体三维模型稳态解的渐近稳定性
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-07-02 DOI: 10.1002/mana.70007
Hang Li, Qiwei Wu
{"title":"Asymptotic stability of the stationary solution to the three-dimensional model of compressible reactive fluid","authors":"Hang Li,&nbsp;Qiwei Wu","doi":"10.1002/mana.70007","DOIUrl":"https://doi.org/10.1002/mana.70007","url":null,"abstract":"<p>In this paper, we consider the asymptotic behavior of solutions to the Cauchy problem for the three-dimensional model of compressible reactive fluid, which can be described by a compressible Navier–Stokes type system with potential external force. First, the existence of the stationary solution is shown in the case that the external force is small enough. Next, making use of the energy method, we prove that the stationary solution is time-asymptotically stable provided that the external force and the initial perturbation are sufficiently small. Finally, we obtain the time-decay rate of the solution toward the stationary solution by combining the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mi>p</mi>\u0000 </msup>\u0000 <mo>−</mo>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mi>q</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$L^{p}-L^{q}$</annotation>\u0000 </semantics></math> estimates for the corresponding linear problem and the energy estimates for the nonlinear system.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2596-2625"},"PeriodicalIF":0.8,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144832615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some nonlinear problems for the superposition of fractional operators with Neumann boundary conditions 具有Neumann边界条件的分数阶算子叠加的一些非线性问题
IF 0.8 3区 数学
Mathematische Nachrichten Pub Date : 2025-07-02 DOI: 10.1002/mana.70006
Serena Dipierro, Edoardo Proietti Lippi, Caterina Sportelli, Enrico Valdinoci
{"title":"Some nonlinear problems for the superposition of fractional operators with Neumann boundary conditions","authors":"Serena Dipierro,&nbsp;Edoardo Proietti Lippi,&nbsp;Caterina Sportelli,&nbsp;Enrico Valdinoci","doi":"10.1002/mana.70006","DOIUrl":"https://doi.org/10.1002/mana.70006","url":null,"abstract":"<p>We discuss the existence theory of a nonlinear problem of nonlocal type subject to Neumann boundary conditions. Differently from the existing literature, the elliptic operator under consideration is obtained as a superposition of operators of mixed order.</p><p>The setting that we introduce is very general and comprises, for instance, the sum of two fractional Laplacians, or of a fractional Laplacian and a Laplacian, as particular cases (the situation in which there are infinitely many operators, and even a continuous distribution of operators, can be considered as well).</p><p>New bits of functional analysis are introduced to deal with this problem. An eigenvalue analysis divides the existence theory into two streams, one related to a mountain pass method, the other to a linking technique.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2570-2595"},"PeriodicalIF":0.8,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.70006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144832614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信