三维强Lipschitz域边界上Sobolev空间H1的表征

IF 0.8 3区 数学 Q2 MATHEMATICS
Nathanael Skrepek
{"title":"三维强Lipschitz域边界上Sobolev空间H1的表征","authors":"Nathanael Skrepek","doi":"10.1002/mana.202400282","DOIUrl":null,"url":null,"abstract":"<p>In this work, we investigate the Sobolev space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mn>1</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>∂</mi>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{H}^{1}(\\partial \\Omega)$</annotation>\n </semantics></math> on a strongly Lipschitz boundary <span></span><math>\n <semantics>\n <mrow>\n <mi>∂</mi>\n <mi>Ω</mi>\n </mrow>\n <annotation>$\\partial \\Omega$</annotation>\n </semantics></math>, that is, <span></span><math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math> is a strongly Lipschitz domain (not necessarily bounded). In most of the literature, this space is defined via charts and Sobolev spaces on flat domains. We show that there is a different approach via differential operators on <span></span><math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math> and a weak formulation directly on the boundary that leads to the same space. This second characterization of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mn>1</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>∂</mi>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{H}^{1}(\\partial \\Omega)$</annotation>\n </semantics></math> is in particular of advantage, when it comes to traces of <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <mo>(</mo>\n <mo>curl</mo>\n <mo>,</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{H}(\\operatorname{curl},\\Omega)$</annotation>\n </semantics></math> vector fields.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 4","pages":"1342-1355"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400282","citationCount":"0","resultStr":"{\"title\":\"Characterizations of the Sobolev space H1 on the boundary of a strongly Lipschitz domain in 3-D\",\"authors\":\"Nathanael Skrepek\",\"doi\":\"10.1002/mana.202400282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we investigate the Sobolev space <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mn>1</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>∂</mi>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathrm{H}^{1}(\\\\partial \\\\Omega)$</annotation>\\n </semantics></math> on a strongly Lipschitz boundary <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>∂</mi>\\n <mi>Ω</mi>\\n </mrow>\\n <annotation>$\\\\partial \\\\Omega$</annotation>\\n </semantics></math>, that is, <span></span><math>\\n <semantics>\\n <mi>Ω</mi>\\n <annotation>$\\\\Omega$</annotation>\\n </semantics></math> is a strongly Lipschitz domain (not necessarily bounded). In most of the literature, this space is defined via charts and Sobolev spaces on flat domains. We show that there is a different approach via differential operators on <span></span><math>\\n <semantics>\\n <mi>Ω</mi>\\n <annotation>$\\\\Omega$</annotation>\\n </semantics></math> and a weak formulation directly on the boundary that leads to the same space. This second characterization of <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mn>1</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>∂</mi>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathrm{H}^{1}(\\\\partial \\\\Omega)$</annotation>\\n </semantics></math> is in particular of advantage, when it comes to traces of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n <mo>(</mo>\\n <mo>curl</mo>\\n <mo>,</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathrm{H}(\\\\operatorname{curl},\\\\Omega)$</annotation>\\n </semantics></math> vector fields.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 4\",\"pages\":\"1342-1355\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400282\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400282\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400282","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了强Lipschitz边界∂Ω上的Sobolev空间h1(∂Ω) $\mathrm{H}^{1}(\partial \Omega)$$\partial \Omega$,即Ω $\Omega$是一个强Lipschitz域(不一定有界)。在大多数文献中,这个空间是通过平面域上的图表和Sobolev空间来定义的。我们证明了通过Ω $\Omega$上的微分算子和直接在边界上导致相同空间的弱公式有一种不同的方法。H 1(∂Ω) $\mathrm{H}^{1}(\partial \Omega)$的第二个特征尤其有利,当涉及到H(旋度,Ω) $\mathrm{H}(\operatorname{curl},\Omega)$向量场的轨迹时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Characterizations of the Sobolev space H1 on the boundary of a strongly Lipschitz domain in 3-D

Characterizations of the Sobolev space H1 on the boundary of a strongly Lipschitz domain in 3-D

In this work, we investigate the Sobolev space H 1 ( Ω ) $\mathrm{H}^{1}(\partial \Omega)$ on a strongly Lipschitz boundary Ω $\partial \Omega$ , that is, Ω $\Omega$ is a strongly Lipschitz domain (not necessarily bounded). In most of the literature, this space is defined via charts and Sobolev spaces on flat domains. We show that there is a different approach via differential operators on Ω $\Omega$ and a weak formulation directly on the boundary that leads to the same space. This second characterization of H 1 ( Ω ) $\mathrm{H}^{1}(\partial \Omega)$ is in particular of advantage, when it comes to traces of H ( curl , Ω ) $\mathrm{H}(\operatorname{curl},\Omega)$ vector fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信