{"title":"三维强Lipschitz域边界上Sobolev空间H1的表征","authors":"Nathanael Skrepek","doi":"10.1002/mana.202400282","DOIUrl":null,"url":null,"abstract":"<p>In this work, we investigate the Sobolev space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mn>1</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>∂</mi>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{H}^{1}(\\partial \\Omega)$</annotation>\n </semantics></math> on a strongly Lipschitz boundary <span></span><math>\n <semantics>\n <mrow>\n <mi>∂</mi>\n <mi>Ω</mi>\n </mrow>\n <annotation>$\\partial \\Omega$</annotation>\n </semantics></math>, that is, <span></span><math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math> is a strongly Lipschitz domain (not necessarily bounded). In most of the literature, this space is defined via charts and Sobolev spaces on flat domains. We show that there is a different approach via differential operators on <span></span><math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math> and a weak formulation directly on the boundary that leads to the same space. This second characterization of <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>H</mi>\n <mn>1</mn>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>∂</mi>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathrm{H}^{1}(\\partial \\Omega)$</annotation>\n </semantics></math> is in particular of advantage, when it comes to traces of <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n <mo>(</mo>\n <mo>curl</mo>\n <mo>,</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathrm{H}(\\operatorname{curl},\\Omega)$</annotation>\n </semantics></math> vector fields.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 4","pages":"1342-1355"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400282","citationCount":"0","resultStr":"{\"title\":\"Characterizations of the Sobolev space H1 on the boundary of a strongly Lipschitz domain in 3-D\",\"authors\":\"Nathanael Skrepek\",\"doi\":\"10.1002/mana.202400282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we investigate the Sobolev space <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mn>1</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>∂</mi>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathrm{H}^{1}(\\\\partial \\\\Omega)$</annotation>\\n </semantics></math> on a strongly Lipschitz boundary <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>∂</mi>\\n <mi>Ω</mi>\\n </mrow>\\n <annotation>$\\\\partial \\\\Omega$</annotation>\\n </semantics></math>, that is, <span></span><math>\\n <semantics>\\n <mi>Ω</mi>\\n <annotation>$\\\\Omega$</annotation>\\n </semantics></math> is a strongly Lipschitz domain (not necessarily bounded). In most of the literature, this space is defined via charts and Sobolev spaces on flat domains. We show that there is a different approach via differential operators on <span></span><math>\\n <semantics>\\n <mi>Ω</mi>\\n <annotation>$\\\\Omega$</annotation>\\n </semantics></math> and a weak formulation directly on the boundary that leads to the same space. This second characterization of <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>H</mi>\\n <mn>1</mn>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>∂</mi>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\mathrm{H}^{1}(\\\\partial \\\\Omega)$</annotation>\\n </semantics></math> is in particular of advantage, when it comes to traces of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n <mo>(</mo>\\n <mo>curl</mo>\\n <mo>,</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\mathrm{H}(\\\\operatorname{curl},\\\\Omega)$</annotation>\\n </semantics></math> vector fields.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 4\",\"pages\":\"1342-1355\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400282\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400282\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400282","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Characterizations of the Sobolev space H1 on the boundary of a strongly Lipschitz domain in 3-D
In this work, we investigate the Sobolev space on a strongly Lipschitz boundary , that is, is a strongly Lipschitz domain (not necessarily bounded). In most of the literature, this space is defined via charts and Sobolev spaces on flat domains. We show that there is a different approach via differential operators on and a weak formulation directly on the boundary that leads to the same space. This second characterization of is in particular of advantage, when it comes to traces of vector fields.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index