全纯偏微分关系的局部H$ H$原理

IF 0.8 3区 数学 Q2 MATHEMATICS
Luis Giraldo, Guillermo Sánchez-Arellano
{"title":"全纯偏微分关系的局部H$ H$原理","authors":"Luis Giraldo,&nbsp;Guillermo Sánchez-Arellano","doi":"10.1002/mana.202300492","DOIUrl":null,"url":null,"abstract":"<p>We introduce the notion of the realifications of an arbitrary <i>holomorphic partial differential relation</i> <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathcal {R}$</annotation>\n </semantics></math>, that are partial differential relations associated with the restrictions of <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>$\\mathcal {R}$</annotation>\n </semantics></math> to totally real submanifolds of maximal dimension. Our main result states that if any realification of an open holomorphic partial differential relation over a Stein manifold satisfies a relative to domain <span></span><math>\n <semantics>\n <mi>h</mi>\n <annotation>$h$</annotation>\n </semantics></math>-principle, then it is possible to deform any formal solution into one that is holonomic in a neighborhood of a Lagrangian skeleton of the Stein manifold. If the Stein manifold is an open Riemann surface or it has finite type, then that skeleton is independent of the formal solution. This yields the existence of local <span></span><math>\n <semantics>\n <mi>h</mi>\n <annotation>$h$</annotation>\n </semantics></math>-principles over that skeleton. These results broaden those obtained by Forstnerič and Slapar on holomorphic immersions, submersions, and complex contact structures for instance to holomorphic local <span></span><math>\n <semantics>\n <mi>h</mi>\n <annotation>$h$</annotation>\n </semantics></math>-principles for the corresponding version in the complex category of some other classical examples of distributions and structures in the smooth category such as complex even contact, complex Engel, and complex twisted locally conformal symplectic structures.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 5","pages":"1521-1548"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local \\n \\n H\\n $H$\\n -principles for holomorphic partial differential relations\",\"authors\":\"Luis Giraldo,&nbsp;Guillermo Sánchez-Arellano\",\"doi\":\"10.1002/mana.202300492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce the notion of the realifications of an arbitrary <i>holomorphic partial differential relation</i> <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathcal {R}$</annotation>\\n </semantics></math>, that are partial differential relations associated with the restrictions of <span></span><math>\\n <semantics>\\n <mi>R</mi>\\n <annotation>$\\\\mathcal {R}$</annotation>\\n </semantics></math> to totally real submanifolds of maximal dimension. Our main result states that if any realification of an open holomorphic partial differential relation over a Stein manifold satisfies a relative to domain <span></span><math>\\n <semantics>\\n <mi>h</mi>\\n <annotation>$h$</annotation>\\n </semantics></math>-principle, then it is possible to deform any formal solution into one that is holonomic in a neighborhood of a Lagrangian skeleton of the Stein manifold. If the Stein manifold is an open Riemann surface or it has finite type, then that skeleton is independent of the formal solution. This yields the existence of local <span></span><math>\\n <semantics>\\n <mi>h</mi>\\n <annotation>$h$</annotation>\\n </semantics></math>-principles over that skeleton. These results broaden those obtained by Forstnerič and Slapar on holomorphic immersions, submersions, and complex contact structures for instance to holomorphic local <span></span><math>\\n <semantics>\\n <mi>h</mi>\\n <annotation>$h$</annotation>\\n </semantics></math>-principles for the corresponding version in the complex category of some other classical examples of distributions and structures in the smooth category such as complex even contact, complex Engel, and complex twisted locally conformal symplectic structures.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 5\",\"pages\":\"1521-1548\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300492\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300492","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了任意全纯偏微分关系R $\mathcal {R}$的实现概念,这是与R $\mathcal {R}$对极大维的全实子流形的限制相关联的偏微分关系。我们的主要结果表明,如果Stein流形上的开放全纯偏微分关系的任何实现满足相对于域h$ h$ -原理,则可以将任何形式解变形为Stein流形的拉格朗日骨架邻域内的完整解。如果斯坦因流形是一个开放的黎曼曲面或者它是有限型的,那么这个骨架是独立于形式解的。这就产生了在该骨架上存在局部h$ h$ -原则。这些结果将forstneristei和Slapar在全纯浸没、浸没和复杂接触结构(例如:全纯局部h$ h$)上得到的结果扩展到光滑范畴中分布和结构(如复偶接触、复Engel和复扭曲局部共形辛结构)的复范畴中相应版本的全纯局部h$原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local H $H$ -principles for holomorphic partial differential relations

We introduce the notion of the realifications of an arbitrary holomorphic partial differential relation R $\mathcal {R}$ , that are partial differential relations associated with the restrictions of R $\mathcal {R}$ to totally real submanifolds of maximal dimension. Our main result states that if any realification of an open holomorphic partial differential relation over a Stein manifold satisfies a relative to domain h $h$ -principle, then it is possible to deform any formal solution into one that is holonomic in a neighborhood of a Lagrangian skeleton of the Stein manifold. If the Stein manifold is an open Riemann surface or it has finite type, then that skeleton is independent of the formal solution. This yields the existence of local h $h$ -principles over that skeleton. These results broaden those obtained by Forstnerič and Slapar on holomorphic immersions, submersions, and complex contact structures for instance to holomorphic local h $h$ -principles for the corresponding version in the complex category of some other classical examples of distributions and structures in the smooth category such as complex even contact, complex Engel, and complex twisted locally conformal symplectic structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信