{"title":"Reducibility of ultra-differentiable quasi-periodic linear systems","authors":"Xiangyuan Zhang, Dongfeng Zhang","doi":"10.1002/mana.202300122","DOIUrl":null,"url":null,"abstract":"<p>In ultra-differentiable classes, this paper studies the reducibility of the quasi-periodic linear system <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mi>x</mi>\n <mo>̇</mo>\n </mover>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mi>A</mi>\n <mo>+</mo>\n <mi>ε</mi>\n <mi>Q</mi>\n <mrow>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mi>x</mi>\n <mo>,</mo>\n <mi>x</mi>\n <mo>∈</mo>\n <msup>\n <mi>R</mi>\n <mi>d</mi>\n </msup>\n </mrow>\n <annotation>$\\dot{x}=(A+\\varepsilon Q(t))x,x\\in \\mathbb {R}^{d}$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> is a constant matrix with different eigenvalues <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>=</mo>\n <mo>(</mo>\n <msub>\n <mi>λ</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>λ</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>λ</mi>\n <mi>d</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$\\lambda =(\\lambda _{1},\\lambda _{2},\\ldots,\\lambda _{d})$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>Q</mi>\n <mo>(</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$Q(t)$</annotation>\n </semantics></math> is a ultra-differentiable quasi-periodic matrix with <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math> basic frequencies <span></span><math>\n <semantics>\n <mrow>\n <mi>ω</mi>\n <mo>=</mo>\n <mo>(</mo>\n <msub>\n <mi>ω</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>ω</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>ω</mi>\n <mi>r</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$\\omega =(\\omega _{1},\\omega _{2},\\ldots,\\omega _{r})$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>ε</mi>\n <annotation>$\\varepsilon$</annotation>\n </semantics></math> is a small perturbation parameter. Suppose that the set formed by the eigenvalues of <i>A</i> and the basic frequencies of <i>Q</i> satisfies a non-resonant condition. Then, it is proved that the linear system can be conjugated to a constant system by a quasi-periodic change of variables.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 5","pages":"1482-1495"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300122","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In ultra-differentiable classes, this paper studies the reducibility of the quasi-periodic linear system , where is a constant matrix with different eigenvalues , is a ultra-differentiable quasi-periodic matrix with basic frequencies and is a small perturbation parameter. Suppose that the set formed by the eigenvalues of A and the basic frequencies of Q satisfies a non-resonant condition. Then, it is proved that the linear system can be conjugated to a constant system by a quasi-periodic change of variables.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index