Hodge loci associated with linear subspaces intersecting in codimension one

IF 0.8 3区 数学 Q2 MATHEMATICS
Remke Kloosterman
{"title":"Hodge loci associated with linear subspaces intersecting in codimension one","authors":"Remke Kloosterman","doi":"10.1002/mana.202400066","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>⊂</mo>\n <msup>\n <mi>P</mi>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$X\\subset \\mathbf {P}^{2k+1}$</annotation>\n </semantics></math> be a smooth hypersurface containing two <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-dimensional linear spaces <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$\\Pi _1,\\Pi _2$</annotation>\n </semantics></math>, such that <span></span><math>\n <semantics>\n <mrow>\n <mo>dim</mo>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>∩</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n <mo>=</mo>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\dim \\Pi _1\\cap \\Pi _2=k-1$</annotation>\n </semantics></math>. In this paper, we study the question whether the Hodge loci <span></span><math>\n <semantics>\n <mrow>\n <mo>NL</mo>\n <mo>(</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>+</mo>\n <mi>λ</mi>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NL}([\\Pi _1]+\\lambda [\\Pi _2])$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mo>NL</mo>\n <mo>(</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>,</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NL}([\\Pi _1],[\\Pi _2])$</annotation>\n </semantics></math> coincide. This turns out to be the case in a neighborhood of <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> is very general on <span></span><math>\n <semantics>\n <mrow>\n <mo>NL</mo>\n <mo>(</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>,</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NL}([\\Pi _1],[\\Pi _2])$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>&gt;</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$k&gt;1$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>≠</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\lambda \\ne 0,1$</annotation>\n </semantics></math>. However, there exists a hypersurface <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> for which <span></span><math>\n <semantics>\n <mrow>\n <mo>NL</mo>\n <mo>(</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>,</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NL}([\\Pi _1],[\\Pi _2])$</annotation>\n </semantics></math> is smooth at <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>, but <span></span><math>\n <semantics>\n <mrow>\n <mo>NL</mo>\n <mo>(</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>+</mo>\n <mi>λ</mi>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NL}([\\Pi _1]+\\lambda [\\Pi _2])$</annotation>\n </semantics></math> is singular for all <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>≠</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\lambda \\ne 0,1$</annotation>\n </semantics></math>. We expect that this is due to an embedded component of <span></span><math>\n <semantics>\n <mrow>\n <mo>NL</mo>\n <mo>(</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>+</mo>\n <mi>λ</mi>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NL}([\\Pi _1]+\\lambda [\\Pi _2])$</annotation>\n </semantics></math>. The case <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$k=1$</annotation>\n </semantics></math> was treated before by Dan, in that case <span></span><math>\n <semantics>\n <mrow>\n <mo>NL</mo>\n <mo>(</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>+</mo>\n <mi>λ</mi>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NL}([\\Pi _1]+\\lambda [\\Pi _2])$</annotation>\n </semantics></math> is nonreduced.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 4","pages":"1220-1229"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400066","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400066","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X P 2 k + 1 $X\subset \mathbf {P}^{2k+1}$ be a smooth hypersurface containing two k $k$ -dimensional linear spaces Π 1 , Π 2 $\Pi _1,\Pi _2$ , such that dim Π 1 Π 2 = k 1 $\dim \Pi _1\cap \Pi _2=k-1$ . In this paper, we study the question whether the Hodge loci NL ( [ Π 1 ] + λ [ Π 2 ] ) $\operatorname{NL}([\Pi _1]+\lambda [\Pi _2])$ and NL ( [ Π 1 ] , [ Π 2 ] ) $\operatorname{NL}([\Pi _1],[\Pi _2])$ coincide. This turns out to be the case in a neighborhood of X $X$ if X $X$ is very general on NL ( [ Π 1 ] , [ Π 2 ] ) $\operatorname{NL}([\Pi _1],[\Pi _2])$ , k > 1 $k>1$ , and λ 0 , 1 $\lambda \ne 0,1$ . However, there exists a hypersurface X $X$ for which NL ( [ Π 1 ] , [ Π 2 ] ) $\operatorname{NL}([\Pi _1],[\Pi _2])$ is smooth at X $X$ , but NL ( [ Π 1 ] + λ [ Π 2 ] ) $\operatorname{NL}([\Pi _1]+\lambda [\Pi _2])$ is singular for all λ 0 , 1 $\lambda \ne 0,1$ . We expect that this is due to an embedded component of NL ( [ Π 1 ] + λ [ Π 2 ] ) $\operatorname{NL}([\Pi _1]+\lambda [\Pi _2])$ . The case k = 1 $k=1$ was treated before by Dan, in that case NL ( [ Π 1 ] + λ [ Π 2 ] ) $\operatorname{NL}([\Pi _1]+\lambda [\Pi _2])$ is nonreduced.

与余维为1相交的线性子空间相关联的霍奇轨迹
设X∧p2 k + 1 $X\subset \mathbf {P}^{2k+1}$是一个包含2k的光滑超曲面$k$-维线性空间Π 1, Π 2 $\Pi _1,\Pi _2$,使dim Π 1∩Π 2 = k−1 $\dim \Pi _1\cap \Pi _2=k-1$。在本文中,我们研究了Hodge基因座NL ([Π 1] + λ [Π 2 .]) $\operatorname{NL}([\Pi _1]+\lambda [\Pi _2])$和NL ([Π 1],[Π 2]) $\operatorname{NL}([\Pi _1],[\Pi _2])$重合。如果X $X$在NL ([Π 1])上是非常一般的,那么在X $X$的邻域内就是这种情况, [Π 2]) $\operatorname{NL}([\Pi _1],[\Pi _2])$, k &gt;1 $k&gt;1$, λ≠0,1 $\lambda \ne 0,1$。 然而,存在一个超曲面X $X$,其中NL ([Π 1],[Π 2]) $\operatorname{NL}([\Pi _1],[\Pi _2])$在X $X$平滑,但NL ([Π 1] + λ [Π 2]) $\operatorname{NL}([\Pi _1]+\lambda [\Pi _2])$对于所有λ≠0,1 $\lambda \ne 0,1$都是奇异的。我们预计这是由于NL ([Π 1] + λ [Π 2]的嵌入式组件]) $\operatorname{NL}([\Pi _1]+\lambda [\Pi _2])$。病例k = 1 $k=1$之前由Dan处理过,在这种情况下NL ([Π 1] + λ [Π 2]]) $\operatorname{NL}([\Pi _1]+\lambda [\Pi _2])$是非还原的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信