{"title":"Hodge loci associated with linear subspaces intersecting in codimension one","authors":"Remke Kloosterman","doi":"10.1002/mana.202400066","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>X</mi>\n <mo>⊂</mo>\n <msup>\n <mi>P</mi>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$X\\subset \\mathbf {P}^{2k+1}$</annotation>\n </semantics></math> be a smooth hypersurface containing two <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-dimensional linear spaces <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$\\Pi _1,\\Pi _2$</annotation>\n </semantics></math>, such that <span></span><math>\n <semantics>\n <mrow>\n <mo>dim</mo>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>∩</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n <mo>=</mo>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\dim \\Pi _1\\cap \\Pi _2=k-1$</annotation>\n </semantics></math>. In this paper, we study the question whether the Hodge loci <span></span><math>\n <semantics>\n <mrow>\n <mo>NL</mo>\n <mo>(</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>+</mo>\n <mi>λ</mi>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NL}([\\Pi _1]+\\lambda [\\Pi _2])$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mo>NL</mo>\n <mo>(</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>,</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NL}([\\Pi _1],[\\Pi _2])$</annotation>\n </semantics></math> coincide. This turns out to be the case in a neighborhood of <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> if <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> is very general on <span></span><math>\n <semantics>\n <mrow>\n <mo>NL</mo>\n <mo>(</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>,</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NL}([\\Pi _1],[\\Pi _2])$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>></mo>\n <mn>1</mn>\n </mrow>\n <annotation>$k>1$</annotation>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>≠</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\lambda \\ne 0,1$</annotation>\n </semantics></math>. However, there exists a hypersurface <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math> for which <span></span><math>\n <semantics>\n <mrow>\n <mo>NL</mo>\n <mo>(</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>,</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NL}([\\Pi _1],[\\Pi _2])$</annotation>\n </semantics></math> is smooth at <span></span><math>\n <semantics>\n <mi>X</mi>\n <annotation>$X$</annotation>\n </semantics></math>, but <span></span><math>\n <semantics>\n <mrow>\n <mo>NL</mo>\n <mo>(</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>+</mo>\n <mi>λ</mi>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NL}([\\Pi _1]+\\lambda [\\Pi _2])$</annotation>\n </semantics></math> is singular for all <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>≠</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\lambda \\ne 0,1$</annotation>\n </semantics></math>. We expect that this is due to an embedded component of <span></span><math>\n <semantics>\n <mrow>\n <mo>NL</mo>\n <mo>(</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>+</mo>\n <mi>λ</mi>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NL}([\\Pi _1]+\\lambda [\\Pi _2])$</annotation>\n </semantics></math>. The case <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$k=1$</annotation>\n </semantics></math> was treated before by Dan, in that case <span></span><math>\n <semantics>\n <mrow>\n <mo>NL</mo>\n <mo>(</mo>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>1</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>+</mo>\n <mi>λ</mi>\n <mrow>\n <mo>[</mo>\n <msub>\n <mi>Π</mi>\n <mn>2</mn>\n </msub>\n <mo>]</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\operatorname{NL}([\\Pi _1]+\\lambda [\\Pi _2])$</annotation>\n </semantics></math> is nonreduced.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 4","pages":"1220-1229"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400066","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400066","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a smooth hypersurface containing two -dimensional linear spaces , such that . In this paper, we study the question whether the Hodge loci and coincide. This turns out to be the case in a neighborhood of if is very general on , , and . However, there exists a hypersurface for which is smooth at , but is singular for all . We expect that this is due to an embedded component of . The case was treated before by Dan, in that case is nonreduced.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index