一些有限单群的特征余度刻画

IF 0.8 3区 数学 Q2 MATHEMATICS
Hung P. Tong-Viet
{"title":"一些有限单群的特征余度刻画","authors":"Hung P. Tong-Viet","doi":"10.1002/mana.202400283","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> be a finite group and let <span></span><math>\n <semantics>\n <mi>χ</mi>\n <annotation>$\\chi$</annotation>\n </semantics></math> be a complex irreducible character of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. The codegree of <span></span><math>\n <semantics>\n <mi>χ</mi>\n <annotation>$\\chi$</annotation>\n </semantics></math> is defined by <span></span><math>\n <semantics>\n <mrow>\n <mi>cod</mi>\n <mo>(</mo>\n <mi>χ</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mo>|</mo>\n <mi>G</mi>\n <mo>:</mo>\n <mi>ker</mi>\n <mo>(</mo>\n <mi>χ</mi>\n <mo>)</mo>\n <mo>|</mo>\n <mo>/</mo>\n <mi>χ</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$\\textrm {cod}(\\chi)=|G:\\textrm {ker}(\\chi)|/\\chi (1)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>ker</mi>\n <mo>(</mo>\n <mi>χ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\textrm {ker}(\\chi)$</annotation>\n </semantics></math> is the kernel of <span></span><math>\n <semantics>\n <mi>χ</mi>\n <annotation>$\\chi$</annotation>\n </semantics></math>. In this paper, we show that if <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> is a finite simple exceptional group of Lie type or a finite simple projective special linear group and <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is any finite group such that the character codegree sets of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> coincide, then <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> are isomorphic.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 4","pages":"1356-1369"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400283","citationCount":"0","resultStr":"{\"title\":\"A characterization of some finite simple groups by their character codegrees\",\"authors\":\"Hung P. Tong-Viet\",\"doi\":\"10.1002/mana.202400283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> be a finite group and let <span></span><math>\\n <semantics>\\n <mi>χ</mi>\\n <annotation>$\\\\chi$</annotation>\\n </semantics></math> be a complex irreducible character of <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>. The codegree of <span></span><math>\\n <semantics>\\n <mi>χ</mi>\\n <annotation>$\\\\chi$</annotation>\\n </semantics></math> is defined by <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>cod</mi>\\n <mo>(</mo>\\n <mi>χ</mi>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mo>|</mo>\\n <mi>G</mi>\\n <mo>:</mo>\\n <mi>ker</mi>\\n <mo>(</mo>\\n <mi>χ</mi>\\n <mo>)</mo>\\n <mo>|</mo>\\n <mo>/</mo>\\n <mi>χ</mi>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\textrm {cod}(\\\\chi)=|G:\\\\textrm {ker}(\\\\chi)|/\\\\chi (1)$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ker</mi>\\n <mo>(</mo>\\n <mi>χ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\textrm {ker}(\\\\chi)$</annotation>\\n </semantics></math> is the kernel of <span></span><math>\\n <semantics>\\n <mi>χ</mi>\\n <annotation>$\\\\chi$</annotation>\\n </semantics></math>. In this paper, we show that if <span></span><math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math> is a finite simple exceptional group of Lie type or a finite simple projective special linear group and <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> is any finite group such that the character codegree sets of <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math> coincide, then <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math> are isomorphic.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 4\",\"pages\":\"1356-1369\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400283\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400283\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400283","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G$ G$是有限群,设χ $\chi$是G$ G$的复不可约特征。χ $\chi$的余度定义为cod (χ) = | G:x (χ)|/ χ (1)$ \textrm {cod}(\chi)=|G:\textrm {ker}(\chi)|/\chi (1)$,其中,ker (χ)$ \textrm {ker}(\chi)$是χ $\chi$的核。在本文中,我们证明了如果H$ H$是Lie型的有限简单例外群或有限简单射影特殊线性群,并且G$ G$是使G$ G$与H$ H$的字符余度集重合的任何有限群,那么G$ G$和H$ H$是同构的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A characterization of some finite simple groups by their character codegrees

Let G $G$ be a finite group and let χ $\chi$ be a complex irreducible character of G $G$ . The codegree of χ $\chi$ is defined by cod ( χ ) = | G : ker ( χ ) | / χ ( 1 ) $\textrm {cod}(\chi)=|G:\textrm {ker}(\chi)|/\chi (1)$ , where ker ( χ ) $\textrm {ker}(\chi)$ is the kernel of χ $\chi$ . In this paper, we show that if H $H$ is a finite simple exceptional group of Lie type or a finite simple projective special linear group and G $G$ is any finite group such that the character codegree sets of G $G$ and H $H$ coincide, then G $G$ and H $H$ are isomorphic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信