{"title":"一些有限单群的特征余度刻画","authors":"Hung P. Tong-Viet","doi":"10.1002/mana.202400283","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> be a finite group and let <span></span><math>\n <semantics>\n <mi>χ</mi>\n <annotation>$\\chi$</annotation>\n </semantics></math> be a complex irreducible character of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. The codegree of <span></span><math>\n <semantics>\n <mi>χ</mi>\n <annotation>$\\chi$</annotation>\n </semantics></math> is defined by <span></span><math>\n <semantics>\n <mrow>\n <mi>cod</mi>\n <mo>(</mo>\n <mi>χ</mi>\n <mo>)</mo>\n <mo>=</mo>\n <mo>|</mo>\n <mi>G</mi>\n <mo>:</mo>\n <mi>ker</mi>\n <mo>(</mo>\n <mi>χ</mi>\n <mo>)</mo>\n <mo>|</mo>\n <mo>/</mo>\n <mi>χ</mi>\n <mo>(</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$\\textrm {cod}(\\chi)=|G:\\textrm {ker}(\\chi)|/\\chi (1)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mi>ker</mi>\n <mo>(</mo>\n <mi>χ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\textrm {ker}(\\chi)$</annotation>\n </semantics></math> is the kernel of <span></span><math>\n <semantics>\n <mi>χ</mi>\n <annotation>$\\chi$</annotation>\n </semantics></math>. In this paper, we show that if <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> is a finite simple exceptional group of Lie type or a finite simple projective special linear group and <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> is any finite group such that the character codegree sets of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> coincide, then <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>H</mi>\n <annotation>$H$</annotation>\n </semantics></math> are isomorphic.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 4","pages":"1356-1369"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400283","citationCount":"0","resultStr":"{\"title\":\"A characterization of some finite simple groups by their character codegrees\",\"authors\":\"Hung P. Tong-Viet\",\"doi\":\"10.1002/mana.202400283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> be a finite group and let <span></span><math>\\n <semantics>\\n <mi>χ</mi>\\n <annotation>$\\\\chi$</annotation>\\n </semantics></math> be a complex irreducible character of <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>. The codegree of <span></span><math>\\n <semantics>\\n <mi>χ</mi>\\n <annotation>$\\\\chi$</annotation>\\n </semantics></math> is defined by <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>cod</mi>\\n <mo>(</mo>\\n <mi>χ</mi>\\n <mo>)</mo>\\n <mo>=</mo>\\n <mo>|</mo>\\n <mi>G</mi>\\n <mo>:</mo>\\n <mi>ker</mi>\\n <mo>(</mo>\\n <mi>χ</mi>\\n <mo>)</mo>\\n <mo>|</mo>\\n <mo>/</mo>\\n <mi>χ</mi>\\n <mo>(</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\textrm {cod}(\\\\chi)=|G:\\\\textrm {ker}(\\\\chi)|/\\\\chi (1)$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ker</mi>\\n <mo>(</mo>\\n <mi>χ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\textrm {ker}(\\\\chi)$</annotation>\\n </semantics></math> is the kernel of <span></span><math>\\n <semantics>\\n <mi>χ</mi>\\n <annotation>$\\\\chi$</annotation>\\n </semantics></math>. In this paper, we show that if <span></span><math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math> is a finite simple exceptional group of Lie type or a finite simple projective special linear group and <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> is any finite group such that the character codegree sets of <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math> coincide, then <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>H</mi>\\n <annotation>$H$</annotation>\\n </semantics></math> are isomorphic.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 4\",\"pages\":\"1356-1369\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202400283\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400283\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202400283","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A characterization of some finite simple groups by their character codegrees
Let be a finite group and let be a complex irreducible character of . The codegree of is defined by , where is the kernel of . In this paper, we show that if is a finite simple exceptional group of Lie type or a finite simple projective special linear group and is any finite group such that the character codegree sets of and coincide, then and are isomorphic.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index