Hörmander向量场的亚椭圆p$ p$ -拉普拉斯谱问题

IF 0.8 3区 数学 Q2 MATHEMATICS
Mukhtar Karazym, Durvudkhan Suragan
{"title":"Hörmander向量场的亚椭圆p$ p$ -拉普拉斯谱问题","authors":"Mukhtar Karazym,&nbsp;Durvudkhan Suragan","doi":"10.1002/mana.202300513","DOIUrl":null,"url":null,"abstract":"<p>Based on variational methods, we study the spectral problem for the subelliptic <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-Laplacian arising from smooth Hörmander vector fields. We derive the smallest eigenvalue, prove its simplicity and isolatedness, establish the positivity of the first eigenfunction, and show Hölder regularity of eigenfunctions with respect to the control distance. Moreover, we determine the best constant for the <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <annotation>$L^{p}$</annotation>\n </semantics></math>-Poincaré–Friedrichs inequality for Hörmander vector fields as a byproduct.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 4","pages":"1184-1200"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subelliptic \\n \\n p\\n $p$\\n -Laplacian spectral problem for Hörmander vector fields\",\"authors\":\"Mukhtar Karazym,&nbsp;Durvudkhan Suragan\",\"doi\":\"10.1002/mana.202300513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Based on variational methods, we study the spectral problem for the subelliptic <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math>-Laplacian arising from smooth Hörmander vector fields. We derive the smallest eigenvalue, prove its simplicity and isolatedness, establish the positivity of the first eigenfunction, and show Hölder regularity of eigenfunctions with respect to the control distance. Moreover, we determine the best constant for the <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msup>\\n <annotation>$L^{p}$</annotation>\\n </semantics></math>-Poincaré–Friedrichs inequality for Hörmander vector fields as a byproduct.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 4\",\"pages\":\"1184-1200\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300513\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300513","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

基于变分方法,研究了光滑Hörmander向量场引起的次椭圆型p$ p$ -拉普拉斯算子的谱问题。我们推导了最小特征值,证明了它的简单性和孤立性,建立了第一特征函数的正性,并给出了Hölder特征函数对控制距离的正则性。此外,作为副产物,我们确定了L p $L^{p}$ - poincarr - friedrichs不等式对于Hörmander向量场的最佳常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subelliptic p $p$ -Laplacian spectral problem for Hörmander vector fields

Based on variational methods, we study the spectral problem for the subelliptic p $p$ -Laplacian arising from smooth Hörmander vector fields. We derive the smallest eigenvalue, prove its simplicity and isolatedness, establish the positivity of the first eigenfunction, and show Hölder regularity of eigenfunctions with respect to the control distance. Moreover, we determine the best constant for the L p $L^{p}$ -Poincaré–Friedrichs inequality for Hörmander vector fields as a byproduct.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信